I have a pandas dataframe that looks like this:
data 0 [26.113017616106, 106.948066803935, 215.488217... 1 [26.369709448639, 106.961107298101, 215.558911... 2 [26.261267444521, 106.991763898421, 215.384122... 3 [26.285746968657, 106.912377030428, 215.287348... 4 [26.155342026996, 106.825440402654, 215.114619... 5 [26.159917638984, 106.819720887669, 215.117593... 6 [26.023564401739, 106.843056508808, 215.129947... 7 [26.1155342027, 106.828185769847, 215.15991763... 8 [26.028826355525, 106.841912605811, 215.146190... 9 [26.015099519561, 106.824296499657, 215.130404...
I am trying to extract the 1st element from the Series of lists using this code:
[x[1] for x in df.data]
and I get this result:
0 106.948067 1 106.961107 2 106.991764 3 106.912377 4 106.825440 5 106.819721 6 106.843057 7 106.828186 8 106.841913 9 106.824296
Why do I lose precision and what can I do to keep it?
Advertisement
Answer
By default, pandas displays floating-point values with 6 digits of precision.
You can control the precision with pandas’ set_option e.g.
pd.set_option('precision', 12)