Hi this is quite a complicated question From this script:
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
stock=[here goes a list of 2000+ stock tickers as strings]
sector = []
peg_ratio = []
foward_eps = []
for idx in range(len(stock)):
url_profile='https://finance.yahoo.com/quote/{}/profile?p={}'
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"}
response =requests.get(url_profile.format(stock[idx],stock[idx]),headers=headers)
soup = BeautifulSoup(response.text,'html.parser')
pattern = re.compile(r's--sDatas--s')
script_data = soup.find('script',text=pattern).contents[0]
start = script_data.find("context")-2
json_data=json.loads(script_data[start:-12])
try:
sector.append(json_data['context']['dispatcher']['stores']['QuoteSummaryStore']['assetProfile']['industry'])
except:
sector.append("Error")
url_stats = 'https://finance.yahoo.com/quote/{}/key-statistics?p={}'
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"}
response = requests.get(url_stats.format(stock[idx], stock[idx]), headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
pattern = re.compile(r's--sDatas--s')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context") - 2
json_data = json.loads(script_data[start:-12])
try:
peg_ratio.append(
json_data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['pegRatio'][
'fmt'])
except:
peg_ratio.append("Error")
try:
foward_eps.append(
json_data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['forwardEps'][
'fmt'])
except:
foward_eps.append("Error")
worksheet.write("A" + str(idx + 1), stock[idx])
worksheet.write("B" + str(idx + 1), sector[idx])
worksheet.write("C" + str(idx+1), foward_eps[idx])
worksheet.write("D" + str(idx + 1), peg_ratio[idx])
workbook.close()
The code by itself do what is supposed to do (getting the data:foward eps,peg ratio,sector and paste them on an excel file)but the issue is that it takes a lot of time and the list stock is quite long(2531 elements) is there a way to make this code more efficent or faster?
I have attemped to follow the instruction from this video:https://www.youtube.com/watch?v=nFn4_nA_yk8 But i still need to write the information of any single stock in the excel file is there a way i can optimize all of this ? Maybe by sending multiple request at the same time and write the data on the excel on a different time? The only end goal is to make the whole process as fast as possible. Thanks in advance(if you need any other information leave a comment i will answer as soon as possible)
Advertisement
Answer
First you have to put code in function
# --- globals ---
url_profile = 'https://finance.yahoo.com/quote/{}/profile?p={}'
url_stats = 'https://finance.yahoo.com/quote/{}/key-statistics?p={}'
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"
}
pattern = re.compile(r's--sDatas--s')
# --- functions ---
def process(number, stock_name):
print(f'{number} {stock_name}n', end='', flush=True)
url = url_profile.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text,'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context")-2
data = json.loads(script_data[start:-12])
try:
sector = data['context']['dispatcher']['stores']['QuoteSummaryStore']['assetProfile']['industry']
except:
sector = "Error"
url = url_stats.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context") - 2
data = json.loads(script_data[start:-12])
try:
peg_ratio = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['pegRatio']['fmt']
except:
peg_ratio = "Error"
try:
foward_eps = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['forwardEps']['fmt']
except:
foward_eps = "Error"
# return data - for thread
results[number] = (stock_name, sector, foward_eps, foward_eps, peg_ratio)
# return data - for normal execution
return (stock_name, sector, foward_eps, foward_eps, peg_ratio)
And next you can run it in old way
stock = ['AAPL', 'GOOG', 'TESL', 'MSFT', 'AAPL', 'GOOG', 'TESL', 'MSFT']
_start = time.time()
results = {}
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
for number, stock_name in enumerate(stock, 1):
data = process(number, stock_name)
worksheet.write(f"A{number}", data[0]) #stock_name
worksheet.write(f"B{number}", data[1]) #sector
worksheet.write(f"C{number}", data[2]) #foward_eps
worksheet.write(f"D{number}", data[3]) #peg_ratio
workbook.close()
_end = time.time()
print(_end - _start)
and this gives me time ~15s
, (but sometimes even ~32s
)
And now you can use threading
to run the same function with different values at the same time.
Because thread
can’t return result directly so I use global dictionary results
for this (because threads share memory).
stock = ['AAPL', 'GOOG', 'TESL', 'MSFT', 'AAPL', 'GOOG', 'TESL', 'MSFT']
_start = time.time()
threads = []
results = {}
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
# start all threads
for number, stock_name in enumerate(stock, 1):
t = threading.Thread(target=process, args=(number, stock_name))
t.start()
threads.append(t)
# wait for end of all threads
for t in threads:
t.join()
# use results
for number, data in results.items():
#(stock_name, sector, foward_eps, foward_eps, peg_ratio) = data
worksheet.write(f"A{number}", data[0]) #stock_name
worksheet.write(f"B{number}", data[1]) #sector
worksheet.write(f"C{number}", data[2]) #foward_eps
worksheet.write(f"D{number}", data[3]) #peg_ratio
workbook.close()
_end = time.time()
print(_end - _start)
And this gives me time ~6s
For more stocks it would be better to use Threading.Pool
so it would run only few threads at the same time because running 2000+ threads at the same time is not good idea.
Full working code
import requests
import time
import xlsxwriter
import re
from bs4 import BeautifulSoup
import json
import threading
# --- globals ---
url_profile = 'https://finance.yahoo.com/quote/{}/profile?p={}'
url_stats = 'https://finance.yahoo.com/quote/{}/key-statistics?p={}'
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"
}
pattern = re.compile(r's--sDatas--s')
# --- functions ---
def process(number, stock_name):
print(f'{number} {stock_name}n', end='', flush=True)
url = url_profile.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text,'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context")-2
data = json.loads(script_data[start:-12])
try:
sector = data['context']['dispatcher']['stores']['QuoteSummaryStore']['assetProfile']['industry']
except:
sector = "Error"
url = url_stats.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context") - 2
data = json.loads(script_data[start:-12])
try:
peg_ratio = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['pegRatio']['fmt']
except:
peg_ratio = "Error"
try:
foward_eps = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['forwardEps']['fmt']
except:
foward_eps = "Error"
# return data - for thread
results[number] = (stock_name, sector, foward_eps, foward_eps, peg_ratio)
# return data - for normal execution
return (stock_name, sector, foward_eps, foward_eps, peg_ratio)
# --- main ---
stock = [
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
]
# --- old version ---
_start = time.time()
results = {}
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
for number, stock_name in enumerate(stock, 1):
data = process(number, stock_name)
#(stock_name, sector, foward_eps, foward_eps, peg_ratio) = data
worksheet.write(f"A{number}", data[0]) #stock_name
worksheet.write(f"B{number}", data[1]) #sector
worksheet.write(f"C{number}", data[2]) #foward_eps
worksheet.write(f"D{number}", data[3]) #peg_ratio
workbook.close()
_end = time.time()
print(_end - _start)
# --- new version ---
_start = time.time()
threads = []
results = {}
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
# start all threads
for number, stock_name in enumerate(stock, 1):
t = threading.Thread(target=process, args=(number, stock_name))
t.start()
threads.append(t)
# wait for end of all threads
for t in threads:
t.join()
# use results
for number, data in results.items():
#(stock_name, sector, foward_eps, foward_eps, peg_ratio) = data
worksheet.write(f"A{number}", data[0]) #stock_name
worksheet.write(f"B{number}", data[1]) #sector
worksheet.write(f"C{number}", data[2]) #foward_eps
worksheet.write(f"D{number}", data[3]) #peg_ratio
workbook.close()
_end = time.time()
print(_end - _start)
Version with Pool
import requests
import time
import xlsxwriter
import re
from bs4 import BeautifulSoup
import json
import threading
import threading
from multiprocessing.pool import ThreadPool
# --- globals ---
url_profile = 'https://finance.yahoo.com/quote/{}/profile?p={}'
url_stats = 'https://finance.yahoo.com/quote/{}/key-statistics?p={}'
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"
}
pattern = re.compile(r's--sDatas--s')
# --- functions ---
def process(number, stock_name):
print(f'{number} {stock_name}n', end='', flush=True)
url = url_profile.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text,'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context")-2
data = json.loads(script_data[start:-12])
try:
sector = data['context']['dispatcher']['stores']['QuoteSummaryStore']['assetProfile']['industry']
except:
sector = "Error"
url = url_stats.format(stock_name, stock_name)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
script_data = soup.find('script', text=pattern).contents[0]
start = script_data.find("context") - 2
data = json.loads(script_data[start:-12])
try:
peg_ratio = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['pegRatio']['fmt']
except:
peg_ratio = "Error"
try:
foward_eps = data['context']['dispatcher']['stores']['QuoteSummaryStore']['defaultKeyStatistics']['forwardEps']['fmt']
except:
foward_eps = "Error"
# return data - for thread
results[number] = (stock_name, sector, foward_eps, foward_eps, peg_ratio)
# return data - for normal execution
return (stock_name, sector, foward_eps, foward_eps, peg_ratio)
# --- main ---
stock = [
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
'AAPL', 'GOOG', 'TESL', 'MSFT',
]
_start = time.time()
results = {}
workbook = xlsxwriter.Workbook("test.xlsx")
worksheet = workbook.add_worksheet("Stocks")
with ThreadPool(processes=10) as pool:
pool_results = pool.starmap_async(process, enumerate(stock, 1))
pool_results = pool_results.get()
for number, data in enumerate(pool_results, 1):
#(stock_name, sector, foward_eps, foward_eps, peg_ratio) = data
worksheet.write(f"A{number}", data[0]) #stock_name
worksheet.write(f"B{number}", data[1]) #sector
worksheet.write(f"C{number}", data[2]) #foward_eps
worksheet.write(f"D{number}", data[3]) #peg_ratio
workbook.close()
_end = time.time()
print(_end - _start)