I am trying to simplify
cos(phi) + cos(phi - 2*pi/3)*e^(I*2*pi/3) + cos(phi - 4*pi/3)*e^(I*4*pi/3)
which I know reduces down to 1.5e^(I*phi)
I cannot get SymPy to recognize this. I have tried simplify
, trigsimp
, expand
, etc. But nothing seems to work. Any suggestions?
Here is my code:
import numpy as np %matplotlib inline import matplotlib.pyplot as plt import sympy as sp from sympy import I sp.init_printing() phi = sp.symbols('phi', real = True) vec = sp.cos(phi) + sp.cos(phi - 2*sp.pi/3)*sp.exp(I*2*sp.pi/3) + sp.cos(phi - 4*sp.pi/3)*sp.exp(I*4*sp.pi/3) vec.simplify() vec.rewrite(sp.exp).simplify() vec.rewrite(sp.exp).expand().simplify()
None of these produce the expected result.
I can confirm my result manually, by substituting values in for phi
like this:
sp.simplify(vec.rewrite(sp.exp).simplify() - 3/2*sp.exp(I*phi)).evalf(subs={phi:3})
Advertisement
Answer
It’s not obvious but you can get there like this:
In [40]: phi = symbols('phi', real=True) In [41]: e = cos(phi) + cos(phi - 2*pi/3)*E**(I*2*pi/3) + cos(phi - 4*pi/3)*E**(I*4*pi/3) In [42]: e Out[42]: -2⋅ⅈ⋅π 2⋅ⅈ⋅π ─────── ───── 3 ⎛ π⎞ 3 ⎛ π⎞ - ℯ ⋅sin⎜φ + ─⎟ + cos(φ) - ℯ ⋅cos⎜φ + ─⎟ ⎝ 6⎠ ⎝ 3⎠ In [43]: e.rewrite(exp).expand().rewrite(sin).expand().rewrite(exp) Out[43]: ⅈ⋅φ 3⋅ℯ ────── 2