sns.distplot(doc.ctr_daily_moving_probs, bins=100, color='k')
Somehow seaborn draws smoother line than actual data.
For example, for x-value 0.18, actual data is like 11 but value on smoother line is about 3.
How would I get value 3 for the x-value when given the list of data?
The actual data are:
> [0.25769641467531185, 0.25769641467531185, 0.25769641467531185, > 0.25769641467531185, 0.15655577299412943, 0.15655577299412943, 0.19569471624266177, 0.15655577299412943, 0.19569471624266177, 0.19569471624266177, 0.15655577299412943, 0.19569471624266177, 0.19569471624266177, 0.15655577299412943, 0.19569471624266177, 0.19569471624266177, 0.19569471624266177, 0.2968353579238442, 0.2968353579238442, 0.2981526713477847, 0.31838079968402117, 0.2792418564354889, 0.2792418564354889, 0.2792418564354889, 0.21724015800283883, 0.17810121475430643, 0.1376449580818335, 0.21855747142677937, 0.21855747142677937, 0.21855747142677937, 0.21855747142677937, 0.21855747142677937, 0.25769641467531174, 0.25769641467531174, 0.15655577299412934, 0.1956947162426617, 0.25769641467531174, 0.25769641467531174, 0.25769641467531174, 0.21855747142677937, 0.25769641467531174, 0.35883705635649416, 0.35883705635649416, 0.25769641467531174, 0.25769641467531174, 0.25769641467531174, 0.2968353579238441, 0.2968353579238441, 0.234833659491194, 0.234833659491194, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.3979759996050264, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.33597430117237637, 0.3979759996050264, 0.3979759996050264, 0.33597430117237637, 0.3979759996050264, 0.45997769803767646, 0.4208387547891441, 0.3816998115406118, 0.5839810949029767, 0.5448421516544443, 0.6405573973141552, 0.5899870764735639, 0.48884643479238155, 0.48884643479238155, 0.5279853780409139, 0.32570409467854905, 0.32570409467854905, 0.20770667938383622, 0.19084990577030586, 0.22998884901883823, 0.22998884901883823, 0.2414202266108971, 0.3425608682920795, 0.44370150997326185, 0.5279853780409139, 0.6291260197220963, 0.6291260197220963, 0.6682649629706285, 0.6176946421300374, 0.4545523020162049, 0.3534116603350225, 0.25227101865384016, 0.6231200381515088, 0.5839810949029767, 0.6459827933356266, 0.6459827933356266, 0.6068438500870943, 0.6169579142552125, 0.6675282350958037, 0.19553857391695253, 0.2966792155981349, 0.23467751716548488, 0.28524783800607606, 0.3243867812546084, 0.3142727170864902, 0.3142727170864902, 0.3816998115406117, 0.2805591698594293, 0.2414202266108969, 0.39313118913267053, 0.39313118913267053, 0.4942718308138529, 0.4639296383094982, 0.36278899662831576, 0.3965025438553766, 0.49764318553655895, 0.49764318553655895, 0.559644883969209, 0.4585042422880266, 0.47741505720032246, 0.47741505720032246, 0.4509258415219175, 0.38349874706779596, 0.22035640695396347, 0.15835470852131345, 0.1974936517698458, 0.1974936517698458, 0.1974936517698458, 0.19026932022118995, 0.15655577299412912, 0.15655577299412912, 0.11741682974559677, 0.11741682974559677, 0.0985060148333009, 0.0985060148333009, 0.0985060148333009, 0.13764495808183325, 0.0985060148333009, 0.0985060148333009, 0.05936707158476854, 0.03913894324853206, 0.0492530074166503, 0.08839195066518266, 0.0492530074166503, 0.08839195066518266, 0.12753089391371503, 0.12753089391371503, 0.1781012147543062, 0.16798715058618796, 0.12884820733765562, 0.12884820733765562, 0.12884820733765562, 0.08970926408912326, 0.12884820733765562, 0.07827788649706442, 0.07827788649706442, 0.07827788649706442, 0.1794185281782468, 0.24142022661089685, 0.24142022661089685, 0.24142022661089685, 0.24142022661089685, 0.26670538703119245, 0.26670538703119245, 0.26670538703119245, 0.20470368859854238, 0.20470368859854238, 0.20470368859854238, 0.20470368859854238, 0.22998884901883798, 0.33112949070002035, 0.2691277922673703, 0.2691277922673703, 0.2691277922673703, 0.22998884901883798, 0.25888617521346147, 0.20831585437287034, 0.14631415594022026, 0.14631415594022026, 0.10717521269168791, 0.1577455335322791, 0.25888617521346147, 0.2906732340275474, 0.358100328481669, 0.358100328481669, 0.5212426685955015, 0.5603816118440337, 0.5098112910034426, 0.7120925743658073, 0.651408189357098, 0.6176946421300371, 0.5785556988815047, 0.4154133587676723, 0.47741505720032235, 0.5785556988815047, 0.3004189342582532, 0.3257040946785488, 0.39313118913267037, 0.39313118913267037, 0.39313118913267037, 0.33112949070002035, 0.2691277922673703, 0.3449832735282571, 0.3196981131079615, 0.2590137280992521, 0.30958404893984326, 0.3715857473724933, 0.33244680412396094, 0.3438781817160198, 0.31016463448895903, 0.33039276282519553, 0.28993650615272254, 0.23936618531213139, 0.1773644868794814, 0.1773644868794814, 0.1659331092874225, 0.09850601483330092, 0.14570498095118606, 0.3479862643135508, 0.38712520756208313, 0.4996972268353244, 0.5388361700838568, 0.4996972268353244, 0.4996972268353244, 0.43227013238120277, 0.2502169773550745, 0.21107803410654213, 0.0985060148333009, 0.0985060148333009, 0.13764495808183325, 0.13764495808183325, 0.1767839013303656, 0.15655577299412912, 0.15655577299412912, 0.15655577299412912, 0.15655577299412912, 0.11741682974559677, 0.21855747142677917, 0.3816998115406116, 0.42083875478914395, 0.4599776980376763, 0.4599776980376763, 0.4599776980376763, 0.49911664128620864, 0.3979759996050262, 0.2534893686319086, 0.3154910670645586, 0.3154910670645586, 0.3154910670645586, 0.27635212381602625, 0.23721318056749394, 0.23721318056749394, 0.17941852817824683, 0.07827788649706446, 0.03913894324853211, 0.20228128336236453, 0.20228128336236453, 0.20228128336236453, 0.20228128336236453, 0.24142022661089685, 0.3931311891326704, 0.43227013238120277, 0.2691277922673704, 0.3082667355159027, 0.34740567876443507, 0.3865446220129674, 0.6508276038079822, 0.49911664128620864, 0.4599776980376763, 0.42083875478914395, 0.4154133587676724, 0.40998796274620086, 0.3708490194976685, 0.08187575755143311, 0.09030414435819832, 0.12944308760673068, 0.12944308760673068, 0.13486848362820222, 0.10115493640114144, 0.11560359949845322, 0.12644009682143703, 0.1571506532632042, 0.11801171001467185, 0.11801171001467185, 0.11801171001467185, 0.1571506532632042, 0.19327231100648368, 0.26912779226737044, 0.2637023962458989, 0.30284133949443126, 0.30284133949443126, 0.30284133949443126, 0.2974159434729597, 0.2859845658809008, 0.18484392419971843, 0.17135850530889415, 0.1322195620603618, 0.17135850530889415, 0.1322195620603618, 0.13764495808183336, 0.1996466565144834, 0.1996466565144834, 0.2299888490188381, 0.2691277922673704, 0.2299888490188381, 0.2691277922673704, 0.2691277922673704, 0.20844340725866098, 0.24758235050719332, 0.19701202966660214, 0.1970120296666021, 0.2361509729151345, 0.1970120296666021, 0.1970120296666021, 0.19569471624266155, 0.19026932022118997, 0.2155544806414856, 0.17641553739295326, 0.1372765941444209, 0.17641553739295326, 0.17641553739295326, 0.1372765941444209, 0.14270199016589247, 0.1565557729941292, 0.19569471624266158, 0.2348336594911939, 0.19569471624266158, 0.1565557729941292, 0.19569471624266158, 0.19026932022118997, 0.15113037697265763, 0.11199143372412527, 0.11199143372412527, 0.15113037697265763, 0.15113037697265763, 0.15113037697265763, 0.16798715058618804, 0.20712609383472042, 0.24626503708325276, 0.24626503708325276, 0.24626503708325276, 0.24626503708325276, 0.24626503708325276, 0.2348336594911939, 0.2348336594911939, 0.2348336594911939, 0.2348336594911939, 0.2348336594911939, 0.27397260273972623, 0.27397260273972623, 0.2348336594911939, 0.2348336594911939, 0.2348336594911939, 0.19569471624266158, 0.19569471624266158, 0.19569471624266158, 0.1565557729941292, 0.1565557729941292, 0.11741682974559685, 0.11741682974559685, 0.1565557729941292, 0.21855747142677923, 0.21855747142677923, 0.21855747142677923]
Advertisement
Answer
You can access the plot data with:
# capture the subplot ax = sns.distplot(s, bins=100, color='k') # subplot has only one line line = ax.lines[0] # line data smooth_x, smooth_y = line.get_data() # extract the graph value at (approx) given point: smooth_y[np.searchsorted(smooth_x, 0.18)]
out:
3.337783629904326