Skip to content
Advertisement

Keras my_layer.output returning KerasTensor object instead of Tensor object (in custom loss function)

I’m trying to build a custom loss function in Keras v2.4.3: (as explained in this answer)

def vae_loss(x: tf.Tensor, x_decoded_mean: tf.Tensor,
            original_dim=original_dim):
    z_mean = encoder.get_layer('mean').output
    z_log_var = encoder.get_layer('log-var').output

    xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
    kl_loss = - 0.5 * K.sum(
        1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
    vae_loss = K.mean(xent_loss + kl_loss)
    return vae_loss

But I think it’s behaving much different than expected (perhaps because of my Keras version?), I’m getting this error:

TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.

And I think that’s because encoder.get_layer('mean').output is returning a KerasTensor object instead of a tf.Tensor object (as the other answer indicates).

What am I doing wrong here? How can I access the output of a given layer from inside a custom loss function?

Advertisement

Answer

I think it’s very simple using model.add_loss(). this functionality enables you to pass multiple inputs to your custom loss.

To make a reliable example I produce a simple VAE where I add the VAE loss using model.add_loss()

The full model structure is like below:

def sampling(args):
    
    z_mean, z_log_sigma = args
    batch_size = tf.shape(z_mean)[0]
    epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=1.)
    
    return z_mean + K.exp(0.5 * z_log_sigma) * epsilon

def vae_loss(x, x_decoded_mean, z_log_var, z_mean):

    xent_loss = original_dim * K.binary_crossentropy(x, x_decoded_mean)
    kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var))
    vae_loss = K.mean(xent_loss + kl_loss)

    return vae_loss

def get_model():
    
    ### encoder ###
    
    inp = Input(shape=(n_features,))
    enc = Dense(64)(inp)
    
    z = Dense(32, activation="relu")(enc)
    z_mean = Dense(latent_dim)(z)
    z_log_var = Dense(latent_dim)(z)
            
    encoder = Model(inp, [z_mean, z_log_var])
    
    ### decoder ###
    
    inp_z = Input(shape=(latent_dim,))
    dec = Dense(64)(inp_z)

    out = Dense(n_features)(dec)
    
    decoder = Model(inp_z, out)   
    
    ### encoder + decoder ###
    
    z_mean, z_log_sigma = encoder(inp)
    z = Lambda(sampling)([z_mean, z_log_var])
    pred = decoder(z)
    
    vae = Model(inp, pred)
    vae.add_loss(vae_loss(inp, pred, z_log_var, z_mean))  # <======= add_loss
    vae.compile(loss=None, optimizer='adam')
    
    return vae, encoder, decoder

The running notebook is available here: https://colab.research.google.com/drive/18day9KMEbH8FeYNJlCum0xMLOtf1bXn8?usp=sharing

User contributions licensed under: CC BY-SA
7 People found this is helpful
Advertisement