I’m plotting some data using sns.jointplot
and I want the data inside the scatterplot to remain as points and the histograms on the side to be kde plots instead. I’ve tried using the kind='kde'
argument, but this changes the data inside to not look like points in a scatterplot anymore. I’ve searched around for a bit and can’t find how.
Here’s my code for the plot:
plota = sns.jointplot( data = Hub_all_data, y = "Within module degree", x= "Participation coefficient", s=100, joint_kws=({'color':'green'}), marginal_kws=({'color': 'green'})) plota.ax_joint.axvline(x=np.quantile(Pall,.25), color = "black", linestyle = "--") plota.ax_joint.axvline(x=np.quantile(Pall,.75), color = "black", linestyle = "--") plota.ax_joint.axhline(y=np.quantile(within_module_degree,.25), color = "black", linestyle = "--") plota.ax_joint.axhline(y=np.quantile(within_module_degree,.75), color = "black", linestyle = "--") plota.ax_marg_x.set_xlim(0, .6) plota.ax_marg_y.set_ylim(-3, 2) plota.set_axis_labels('P', 'Z', fontsize=16)
Advertisement
Answer
You could create a JointGrid
and then plot the central and the marginal plots separately:
import seaborn as sns import numpy as np iris = sns.load_dataset('iris') g = sns.JointGrid(data=iris, x="sepal_length", y="petal_length") g.plot_joint(sns.scatterplot, s=100, color='green') g.plot_marginals(sns.kdeplot, color='green', fill=True) for q in np.quantile(iris['sepal_length'], [0.25, 0.75]): for ax in (g.ax_joint, g.ax_marg_x): ax.axvline(q, color="black", linestyle="--") for q in np.quantile(iris['petal_length'], [0.25, 0.75]): for ax in (g.ax_joint, g.ax_marg_y): ax.axhline(q, color="black", linestyle="--")