I would like to make a monthly sums of my NetCDF4 file from daily values for precipitation. However, I am quite not sure what I am doing wrong. It seems that something has changed from the code in this post: Sum a daily time series into a monthly time series with a NaN value threshold
I didn’t find anything helpful in the library documentation.
Here is my code:
import netCDF4 from netCDF4 import Dataset import numpy as np import xarray as xr import pandas as pd data = xr.open_dataset('C3S_concat_cropped.nc') # or I can use data2 = Dataset("C3S_concat_cropped.nc", "r", format="NETCDF4") print(data) Out: <xarray.Dataset> Dimensions: (lat: 115, lon: 140, time: 15157) Coordinates: * lat (lat) float64 -7.4 -7.5 -7.6 -7.7 ... -18.6 -18.7 -18.8 * lon (lon) float64 21.1 21.2 21.3 21.4 ... 34.8 34.9 35.0 * time (time) datetime64[ns] 1979-01-01 ... 2020-06-30 Data variables: Precipitation_Flux (time, lat, lon) float32 ... daily_dataset = xr.Dataset({'Precipitation_Flux': (['time', 'lat', 'lon'], data['Precipitation_Flux'][:, :, :])}, coords={'lat': (data['lat'][:]), 'lon': (data['lon'][:]), 'time': pd.date_range('1979-01-01', periods=15157)}) monthly_dataset = daily_dataset['Precipitation_Flux'].resample(indexer='M', time="1D", skipna=False).sum()
My ValueError:
ValueError: the first argument to .resample must be a dictionary
Advertisement
Answer
I founded that this command works for me!
monthly_dataset = daily_dataset['Precipitation_Flux'].resample(time ='M', skipna=False).sum()
However, the documentation of xarray.Dataset.resample can be quite confusing, as the first argument of the function – indexer is not typically written! So be aware of that! :-)