I have the following array:
import numpy as np a = np.array([[2, 3, 5], [4, 6, 7], [1, 5, 7]])
I want to expand it to this array:
b = [[2 2 2 3 3 3 5 5 5] [2 2 2 3 3 3 5 5 5] [2 2 2 3 3 3 5 5 5] [4 4 4 6 6 6 7 7 7] [4 4 4 6 6 6 7 7 7] [4 4 4 6 6 6 7 7 7] [1 1 1 5 5 5 7 7 7] [1 1 1 5 5 5 7 7 7] [1 1 1 5 5 5 7 7 7]]
So I’m using the following command:
import scipy.ndimage b = scipy.ndimage.interpolation.zoom(a, 3, order=0)
based on this question and answer here Resampling a numpy array representing an image.
However, what I’m getting is this:
b = [[2 2 3 3 3 3 5 5 5] [2 2 3 3 3 3 5 5 5] [4 4 6 6 6 6 7 7 7] [4 4 6 6 6 6 7 7 7] [4 4 6 6 6 6 7 7 7] [4 4 6 6 6 6 7 7 7] [1 1 5 5 5 5 7 7 7] [1 1 5 5 5 5 7 7 7] [1 1 5 5 5 5 7 7 7]]
I want the expansion to be exactly by 3, or whatever the zoom factor is, but currently it’s different for each element of the array.
Is there a direct way to do this? Or shall I do it manually with some coding?
Advertisement
Answer
Maybe a little late, but for the sake of completness: Numpy Kron does the job perfectly
>>> import numpy as np >>> a = np.array([[2,3,5], [4,6,7], [1,5,7]]) >>> np.kron(a, np.ones((3,3))) array([[ 2., 2., 2., 3., 3., 3., 5., 5., 5.], [ 2., 2., 2., 3., 3., 3., 5., 5., 5.], [ 2., 2., 2., 3., 3., 3., 5., 5., 5.], [ 4., 4., 4., 6., 6., 6., 7., 7., 7.], [ 4., 4., 4., 6., 6., 6., 7., 7., 7.], [ 4., 4., 4., 6., 6., 6., 7., 7., 7.], [ 1., 1., 1., 5., 5., 5., 7., 7., 7.], [ 1., 1., 1., 5., 5., 5., 7., 7., 7.], [ 1., 1., 1., 5., 5., 5., 7., 7., 7.]])