Skip to content
Advertisement

Convert Z-score (Z-value, standard score) to p-value for normal distribution in Python

How does one convert a Z-score from the Z-distribution (standard normal distribution, Gaussian distribution) to a p-value? I have yet to find the magical function in Scipy’s stats module to do this, but one must be there.

Advertisement

Answer

I like the survival function (upper tail probability) of the normal distribution a bit better, because the function name is more informative:

p_values = scipy.stats.norm.sf(abs(z_scores)) #one-sided

p_values = scipy.stats.norm.sf(abs(z_scores))*2 #twosided

normal distribution “norm” is one of around 90 distributions in scipy.stats

norm.sf also calls the corresponding function in scipy.special as in gotgenes example

small advantage of survival function, sf: numerical precision should better for quantiles close to 1 than using the cdf

User contributions licensed under: CC BY-SA
1 People found this is helpful
Advertisement