I am trying to use conv1d functions to make a transposed convlotion repectively at jax and tensorflow. I read the documentation of both of jax and tensorflow for the con1d_transposed operation but they are resulting with different outputs for the same input.
I can not find out what the problem is. And I don’t know which one produces the correct results. Help me please.
My Jax Implementation (Jax Code)
x = np.asarray([[[1, 2, 3, 4, -5], [1, 2, 3, 4, 5]]], dtype=np.float32).transpose((0, 2, 1))
filters = np.array([[[1, 0, -1], [-1, 0, 1]],
[[1, 1, 1], [-1, -1, -1]]],
dtype=np.float32).transpose((2, 1, 0))
kernel_rot = np.rot90(np.rot90(filters))
print(f"x strides: {x.strides}nfilters strides: {kernel_rot.strides}nx shape: {x.shape}nfilters shape: {filters.shape}nx: n{x}nfilters: n{filters}n")
dn1 = lax.conv_dimension_numbers(x.shape, filters.shape,('NWC', 'WIO', 'NWC'))
print(dn1)
res = lax.conv_general_dilated(x,kernel_rot,(1,),'SAME',(1,),(1,),dn1)
res = np.asarray(res)
print(f"result strides: {res.strides}nresult shape: {res.shape}nresult: n{res}n")
My TensorFlow Implementation (TensorFlow Code)
x = np.asarray([[[1, 2, 3, 4, -5], [1, 2, 3, 4, 5]]], dtype=np.float32).transpose((0, 2, 1))
filters = np.array([[[1, 0, -1], [-1, 0, 1]],
[[1, 1, 1], [-1, -1, -1]]],
dtype=np.float32).transpose((2, 1, 0))
print(f"x strides: {x.strides}nfilters strides: {filters.strides}nx shape: {x.shape}nfilters shape: {filters.shape}nx: n{x}nfilters: n{filters}n")
res = tf.nn.conv1d_transpose(x, filters, output_shape = x.shape, strides = (1, 1, 1), padding = 'SAME', data_format='NWC', dilations=1)
res = np.asarray(res)
print(f"result strides: {res.strides}nresult shape: {res.shape}nresult: n{res}n")
Output from the Jax
result strides: (40, 8, 4)
result shape: (1, 5, 2)
result:
[[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[10. 10.]
[ 0. 10.]]]
Output from the TensorFlow
result strides: (40, 8, 4)
result shape: (1, 5, 2)
result:
[[[ 5. -5.]
[ 8. -8.]
[ 11. -11.]
[ 4. -4.]
[ 5. -5.]]]
Advertisement
Answer
Function conv1d_transpose
expects filters in shape [filter_width, output_channels, in_channels]
. If filters
in snippet above were transposed to satisfy this shape, then for jax to return correct results, while computing dn1
parameter should be WOI
(Width – Output_channels – Input_channels) and not WIO
(Width – Input_channels – Output_channels). After that:
result.strides = (40, 8, 4)
result.shape = (1, 5, 2)
result:
[[[ -5., 5.],
[ -8., 8.],
[-11., 11.],
[ -4., 4.],
[ -5., 5.]]]
Results not same as with tensorflow, but kernels for jax were flipped, so actually that was expected.