I’m currently trying to bring in some data through np, do some processing on that initial data, plot it, but then be interactive with my plot. Plotly has a tutorial of how to take the plot and change the color of the data points (in jupyter using the click event https://plotly.com/python/click-events/). What I’m hoping to do is be able to take the click event click on 2 points and then create a line between the points selected and gather my positions of the line. The only thing I have found in plotly is just hovering over the data but not being able to do this processing. Is there a better way of doing this rather than using plotly? The documentation on plotly is suggesting to just use dash, but I haven’t found a way of doing this with dash. The follow-up question would be how do I get this data if I export my plot (fig.write_html)?
Sample of what I have is:
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
# Import libraries
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
x=np.random.uniform(-10,10,size=50)
y=np.sin(x)
fig=go.FigureWidget([go.Scatter(x=x, y=y, mode='markers')])
fig.update_layout(template='simple_white')
scatter=fig.data[0]
colors=['#a3a7e4']*100
scatter.marker.color=colors
scatter.marker.size=[10]*100
fig.layout.hovermode='closest'
fig.update_traces(marker=dict(line=dict(color='DarkSlateGrey')))
# create our callback function
def update_point(trace, points, selector):
c = list(scatter.marker.color)
s = list(scatter.marker.size)
for i in points.point_inds:
c[i]='#bae2be'
s[i]=20
with fig.batch_update():
scatter.marker.color=c
scatter.marker.size=s
scatter.on_click(update_point)
fig
Advertisement
Answer
- given you attempted example is ipwidgets I have extended this
- create an empty trace that will be target for lines
- for debugging create
widgets.Output() - now just a case of creating UI using
HBox()andVBox() - for now have demonstrated how you can export by printing to stdout. This clearly could save the JSON to a file
# Import libraries
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import json
import ipywidgets as widgets
x=np.random.uniform(-10,10,size=50)
y=np.sin(x)
fig=go.FigureWidget([go.Scatter(x=x, y=y, mode='markers'), go.Scatter(x=[], y=[], mode="lines")])
fig.update_layout(template='simple_white')
scatter=fig.data[0]
line = fig.data[1]
colors=['#a3a7e4']*100
scatter.marker.color=colors
scatter.marker.size=[10]*100
fig.layout.hovermode='closest'
fig.update_traces(marker=dict(line=dict(color='DarkSlateGrey')))
out = widgets.Output(layout={'border': '1px solid black'})
out.append_stdout('Output appended with append_stdoutn')
# create our callback function
@out.capture()
def update_point(trace, points, selector):
x = list(line.x) + points.xs
y = list(line.y) + points.ys
line.update(x=x, y=y)
scatter.on_click(update_point)
reset = widgets.Button(description="Reset")
export = widgets.Button(description="Export")
@out.capture()
def on_reset_clicked(b):
line.update(x=[], y=[])
out.clear_output()
@out.capture()
def on_export_clicked(b):
print(fig.to_dict()["data"][1])
reset.on_click(on_reset_clicked)
export.on_click(on_export_clicked)
widgets.VBox([widgets.HBox([reset, export]), widgets.VBox([fig, out])])
