I have a data set that contains 2 columns:
1.) A string column consisting of 21 different letters. 2.) A classification column: Each of these strings is associated with a number from 1-7.
Using the following code, I first perform integer encoding.
codes = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'] def create_dict(codes): char_dict = {} for index, val in enumerate(codes): char_dict[val] = index+1 return char_dict def integer_encoding(data): """ - Encodes code sequence to integer values. - 20 common amino acids are taken into consideration and rest 4 are categorized as 0. """ encode_list = [] for row in data['Sequence'].values: row_encode = [] for code in row: row_encode.append(char_dict.get(code, 0)) encode_list.append(np.array(row_encode)) return encode_list
Using this code, I am performing integer and then one-hot encoding all in memory.
char_dict = create_dict(codes) train_encode = integer_encoding(balanced_train_df.reset_index()) val_encode = integer_encoding(val_df.reset_index()) train_pad = pad_sequences(train_encode, maxlen=max_length, padding='post', truncating='post') val_pad = pad_sequences(val_encode, maxlen=max_length, padding='post', truncating='post') train_ohe = to_categorical(train_pad) val_ohe = to_categorical(val_pad)
Then I train my learner like so.
es = EarlyStopping(monitor='val_loss', patience=3, verbose=1) history2 = model2.fit( train_ohe, y_train, epochs=50, batch_size=64, validation_data=(val_ohe, y_val), callbacks=[es] )
This gives me validation accuracies that are decent for a first stab at about 86%.
Even the first epoch looks like this:
Train on 431403 samples, validate on 50162 samples Epoch 1/50 431403/431403 [==============================] - 187s 434us/sample - loss: 1.3532 - accuracy: 0.6947 - val_loss: 0.9443 - val_accuracy: 0.7730
Note the validation accuracy of 77% on first round.
But because my dataset is relatively big, I end up consuming about 50+Gb. This is so because I am loading the entire dataset into memory and convert the entire dataset and data transformations in memory.
To do my learning in a more memory efficient way, I am introducing a data generator like so:
class DataGenerator(Sequence): 'Generates data for Keras' def __init__(self, list_IDs, data_col, labels, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=True): 'Initialization' self.dim = dim self.batch_size = batch_size self.data_col_name = data_col self.labels = labels self.list_IDs = list_IDs self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs list_IDs_temp = [self.list_IDs[k] for k in indexes] # Generate data X, y = self.__data_generation(list_IDs_temp) return X, y def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, list_IDs_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.empty((self.batch_size, *self.dim)) y = np.empty(self.batch_size, dtype=int) # Generate data for i, ID in enumerate(list_IDs_temp): # Store sample # Read sequence string and convert to array # of padded categorical data in array int_encode_dt = integer_encoding(integer_encoding([balanced_train_df.loc[ID, self.data_col_name]])) padded_dt = pad_sequences(int_encode_dt, maxlen=660, padding='post', truncating='post') categorical_dt = to_categorical(padded_dt) X[i,] = categorical_dt # Store class y[i] = self.labels[ID]-1 return X, to_categorical(y, num_classes=self.n_classes)
The code was adapted from here: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
Learning is then triggered like so:
params = {'dim': (660, 21), # sequences are at most 660 long and are encoded in 20 common amino acids, 'batch_size': 32, 'n_classes': 7, 'n_channels': 1, 'shuffle': False} training_generator = DataGenerator(balanced_train_df.index, 'Sequence', balanced_train_df['ec_lvl_1'], **params) validate_generator = DataGenerator(val_df.index, 'Sequence', val_df['ec_lvl_1'], **params) # Early Stopping es = EarlyStopping(monitor='val_loss', patience=3, verbose=1) history2 = model2.fit( training_generator, validation_data=validate_generator, use_multiprocessing=True, workers=6, epochs=50, callbacks=[es] )
The problem here is that my validation accuracies never exceed 15% using the data generator.
Epoch 1/10 13469/13481 [============================>.] - ETA: 0s - loss: 2.0578 - accuracy: 0.1427 13481/13481 [==============================] - 242s 18ms/step - loss: 2.0578 - accuracy: 0.1427 - val_loss: 1.9447 - val_accuracy: 0.0919
Note the validation accuracy of only 9%.
My question is why that is occurring? One thing I cannot explain is this:
When I do all in memory learning, I set the batch size to 32 or 64, but the number of steps remains roughly 413k (the total number of training samples). But when I use the data generators, I get much smaller numbers generally 413k samples/batch size. Is this telling me that I am not really using the batch size parameter in the in-memory learning case? Explanations appreciated.
Advertisement
Answer
A series of stupid errors cuased this discrepancy and they are all located in this one line here:
int_encode_dt = integer_encoding(integer_encoding([balanced_train_df.loc[ID, self.data_col_name]]))
Error 1: I should pass in the dataframe I want to process which allows me to feed in training and validation error. The way I did this before…even if I thought I passed in validation data, I would still use training data.
Error 2: I was double integer encoding my data (duh!)