Skip to content
Advertisement

Web scraping python (beautifull soup) multiple page and subpage

I create my soup with :

import pandas as pd 
import requests
from bs4 import BeautifulSoup
import os
import string

for i in string.ascii_uppercase[:27]:
    url = "https://myanimelist.net/anime.php?letter={}".format(i)
    r = requests.get(url)
    soup = BeautifulSoup(r.text, 'html.parser')

I’m trying to create a dataframe from web scraping this site “https://myanimelist.net” et and i would like to get in a first step anime title, eps, type

and secondly in detail of each anime (page like that : https://myanimelist.net/anime/2928/hack__GU_Returner) i would like to gather the score that user assigned contains in (for example :

<a href="https://myanimelist.net/profile/Tii__">Tii__</a>

and

<table border="0" width="105" cellpadding="0" cellspacing="0" class="borderClass" style="border-width: 1px;">
        <tbody><tr>
          <td class="borderClass bgColor1"><strong>Overall</strong></td>
          <td class="borderClass bgColor1"><strong>10</strong></td>
        </tr>
        <tr>
          <td class="borderClass" align="left">Story</td>
          <td class="borderClass">10</td>
        </tr>
                  <tr>
            <td class="borderClass" align="left">Animation</td>
            <td class="borderClass">9</td>
          </tr>
          <tr>
            <td class="borderClass" align="left">Sound</td>
            <td class="borderClass">9</td>
          </tr>
                <tr>
          <td class="borderClass" align="left">Character</td>
          <td class="borderClass">9</td>
        </tr>
        <tr>
          <td class="borderClass" style="border-width: 0;" align="left">Enjoyment</td>
          <td class="borderClass" style="border-width: 0;">10</td>
        </tr>
      </tbody></table>

can you help to gather all that information ?

if my request it’s not clear, tell me.

Advertisement

Answer

This can be done directly with pandas using the read_html() function:

import pandas as pd 
import string

df = pd.DataFrame()

for i in string.ascii_uppercase[:1]:#[:27]:
    url = "https://myanimelist.net/anime.php?letter={}".format(i)
    print url
    tables = pd.read_html(url, header=0)

    if df.empty:
        df = tables[2]
    else:
        df = pd.concat([df, tables[2]])

print df    

This returns a list of ALL tables found at a given URL. In your case, you only need the second table. This would give you a dataframe starting:

    Unnamed: 0                                              Title     Type  Eps.  Score
0          NaN  A Kite add  Sawa is a school girl, an orphan, ...      OVA     2   6.67
1          NaN  A Piece of Phantasmagoria add  A collection of...      OVA    15   6.25
2          NaN  A Play add  Music Video for the group ALT, mad...    Music     1   4.62
3          NaN  A Smart Experiment add  Bonus short included o...  Special     1   4.95
4          NaN  A-Channel add  Tooru and Run have been best fr...       TV    12   7.04

To do this using BeautifulSoup, you could use the following approach:

from bs4 import BeautifulSoup
import pandas as pd 
import string
import requests

columns = [u'Title', u'Type', u'Eps.', u'Score']
df = pd.DataFrame()

for i in string.ascii_uppercase[:27]:
    url = "https://myanimelist.net/anime.php?letter={}".format(i)

    r = requests.get(url)
    soup = BeautifulSoup(r.text, 'html.parser')    
    table = soup.find_all('table')[2]

    for tr in table.find_all('tr')[1:]:
        row = [td.get_text(strip=True) for td in tr.find_all('td')[1:5]]
        url_sub = tr.find('a')['href']
        print url_sub

        r_sub = requests.get(url_sub)
        soup_sub = BeautifulSoup(r_sub.text, 'html.parser')

        all_scores = []     # each title has multiple lists of scores

        # Select all of the user assigned score tables
        for div in soup_sub.select('div.spaceit.textReadability.word-break.pt8.mt8'):
            scores = []     # scores for one block

            for tr_sub in div.div.table.find_all('tr'):
                scores.append([td_sub.text for td_sub in tr_sub.find_all('td')])
            all_scores.append(scores)

        print all_scores    # These probably need adding to the row. Not all have scores.

        df_row = pd.DataFrame([row], columns=columns)

        if df.empty:
            df = df_row
        else:
            df = pd.concat([df, df_row])

print df

For each film, a list of all the scores found is created and appended to all_scores although it is not clear how you would this added to your main dataframe.

For example, scores could look like:

https://myanimelist.net/anime/320/A_Kite
[[[u'Overall', u'8'], [u'Story', u'8'], [u'Animation', u'7'], [u'Sound', u'7'], [u'Character', u'7'], [u'Enjoyment', u'8']], [[u'Overall', u'8'], [u'Story', u'8'], [u'Animation', u'10'], [u'Sound', u'0'], [u'Character', u'7'], [u'Enjoyment', u'10']], [[u'Overall', u'7'], [u'Story', u'7'], [u'Animation', u'8'], [u'Sound', u'6'], [u'Character', u'7'], [u'Enjoyment', u'8']], [[u'Overall', u'2'], [u'Story', u'2'], [u'Animation', u'2'], [u'Sound', u'2'], [u'Character', u'2'], [u'Enjoyment', u'2']]]
User contributions licensed under: CC BY-SA
5 People found this is helpful
Advertisement