Skip to content
Advertisement

ValueError: Input 0 of layer sequential is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 2584]

I’m working in a project that isolate vocal parts from an audio. I’m using the DSD100 dataset, but for doing tests I’m using the DSD100subset dataset from I only use the mixtures and the vocals. I’m basing this work on this article

First I process the audios to extract a spectrogram and put it on a list, with all the audios forming four lists (trainMixed, trainVocals, testMixed, testVocals). Like this:

def to_spec(wav, n_fft=1024, hop_length=256):
    return librosa.stft(wav, n_fft=n_fft, hop_length=hop_length)

def prepareData(filename, sr=22050, hop_length=256, n_fft=1024):
  audio_wav = librosa.load(filename, sr=sr, mono=True, duration=30)[0]
  audio_spec=to_spec(audio_wav, n_fft=n_fft, hop_length=hop_length)
  audio_spec_mag = np.abs(audio_spec)
  maxVal = np.max(audio_spec_mag)

  return audio_spec_mag, maxVal


# FOR EVERY LIST (trainMixed, trainVocals, testMixed, testVocals)
trainMixed = []
trainMixedNum = 0
for (root, dirs, files) in walk('./Dev-subset-mix/Dev/'):
  for d in dirs:
    filenameMix = './Dev-subset-mix/Dev/'+d+'/mixture.wav'
    spec_mag, maxVal = prepareData(filenameMix, n_fft=1024, hop_length=256)
    trainMixed.append(spec_mag/maxVal)

Next i build the model:

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.layers.advanced_activations import LeakyReLU

model = Sequential()
model.add(Conv2D(16, (3,3), padding='same', input_shape=(513, 25, 1)))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64))
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=keras.losses.binary_crossentropy, optimizer=sgd, metrics=['accuracy'])

And run the model:

model.fit(trainMixed, trainVocals,epochs=10, validation_data=(testMixed, testVocals))

But I’m getting this result:

ValueError: in user code:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self, iterator)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step  **
        outputs = model.train_step(data)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step
        y_pred = self(x, training=True)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
        self.name)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:158 assert_input_compatibility
        ' input tensors. Inputs received: ' + str(inputs))

    ValueError: Layer sequential_1 expects 1 inputs, but it received 2 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 2584) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, 2584) dtype=float32>]

I am new to this topic, thanks for the help provided in advance.

Advertisement

Answer

It’s probably an issue with specifying input data to Keras’ fit() function. I would recommend using a tf.data.Dataset as input to fit() like so:

import tensorflow as tf

train_data = tf.data.Dataset.from_tensor_slices((trainMixed, trainVocals))
valid_data = tf.data.Dataset.from_tensor_slices((testMixed, testVocals))

model.fit(train_data, epochs=10, validation_data=valid_data)

You can then also use functions like shuffle() and batch() on the TF datasets.

EDIT: It also seems like your input shapes are incorrect. The input_shape you specified for the first conv layer is (513, 25, 1), so the input should be a batch tensor of shape (batch_size, 513, 25, 1), whereas you’re inputting the shape (batch_size, 2584). So you’ll need to reshape and probably cut your inputs to the specified shape, or specify a new shape.

User contributions licensed under: CC BY-SA
8 People found this is helpful
Advertisement