I am trying to create a mnist gan which will use tpu. I copied the gan code from here.
Then i made some of my own modifications to run the code on tpu.for making changes i followed this tutorial which shows how to us tpu on tensorflow on tensorflow website.
but thats not working and raising an error here is my code.
# -*- coding: utf-8 -*- """Untitled13.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1gbHDaCeFUCGDkkNgAPjGFQIDvZ5NxVfr """ # Commented out IPython magic to ensure Python compatibility. # %tensorflow_version 2.x import tensorflow as tf import numpy as np resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) # This is the TPU initialization code that has to be at the beginning. tf.tpu.experimental.initialize_tpu_system(resolver) print("All devices: ", tf.config.list_logical_devices('TPU')) strategy = tf.distribute.TPUStrategy(resolver) import glob import matplotlib.pyplot as plt import numpy as np import os import PIL from tensorflow.keras import layers import time from IPython import display (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1] BUFFER_SIZE = 60000 BATCH_SIZE = 256 # Batch and shuffle the data train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model # This method returns a helper function to compute cross entropy loss cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE) EPOCHS = 50 noise_dim = 100 num_examples_to_generate = 16 # You will reuse this seed overtime (so it's easier) # to visualize progress in the animated GIF) seed = tf.random.normal([num_examples_to_generate, noise_dim]) def generate_and_save_images(model, epoch, test_input): # Notice `training` is set to False. # This is so all layers run in inference mode (batchnorm). predictions = model(test_input, training=False) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() def train(dataset, epochs): for epoch in range(epochs): start = time.time() for image_batch in (dataset): strategy.run(train_step, args=(image_batch,)) # Produce images for the GIF as you go display.clear_output(wait=True) generate_and_save_images(generator, epoch + 1, seed) # Save the model every 15 epochs if (epoch + 1) % 15 == 0: checkpoint.save(file_prefix = checkpoint_prefix) print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start)) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_images(generator, epochs, seed) def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss # Notice the use of `tf.function` # This annotation causes the function to be "compiled". @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) fake_output_0 = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output_0) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) with strategy.scope(): generator = make_generator_model() generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator = make_discriminator_model() discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator) train(train_dataset, EPOCHS)
and the final output is (not showing whole output cause i am in colab and i do not want copy output pf each cell one by one)
ValueError: Dimensions must be equal, but are 96 and 256 for '{{node add}} = AddV2[T=DT_FLOAT](binary_crossentropy/weighted_loss/Mul, binary_crossentropy_1/weighted_loss/Mul)' with input shapes: [96], [256].
Advertisement
Answer
The training data has 60000
instances, if you split them into batches of size 256
you are left a smaller batch of size 60000 % 256
which is 96
. Keras also assumes this as a batch if you dont drop it. So in train_step
for this batch of size 96
, the shape of real_output
will be (96, 1)
and the shape of fake_output
will be (256, 1)
. As you set reduction
to None
in cross_entropy
loss, the shape will be retained, so shape of real_loss
will (96,)
and shape of fake_loss
will be (256,)
then adding them will definitely result in an error.
You may solve this problem this way –
# Let reduction param be default one which is 'auto'/'sum_over_batch_size' reduction type cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
or
# Drop the remainder batch train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)