Skip to content
Advertisement

TypeError: multiple values for argument ‘weight_decay’

I am using an AdamW optimizer that uses cosine decay with a warmup learning scheduler. I have written the custom scheduler from scratch and using the AdamW optimizer provided by the TensorFlow addons library.

class CosineScheduler(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self,
                learning_rate_base,
                total_steps,
                warmup_learning_rate=0.0,
                warmup_steps=0):
        self.learning_rate_base = learning_rate_base
        self.total_steps = total_steps
        self.warmup_learning_rate =warmup_learning_rate
        self.warmup_steps = warmup_steps
    
    def __call__(self,step):
        learning_rate = 0.5 * self.learning_rate_base * (1 + tf.cos(
            np.pi * 
            (tf.cast(step, tf.float32) - self.warmup_steps)/ float(self.total_steps-self.warmup_steps)))
        if self.warmup_steps > 0:
            slope = (self.learning_rate_base - self.warmup_learning_rate) / self.warmup_steps
            warmup_rate = slope * tf.cast(step, tf.float32) + self.warmup_learning_rate
            learning_rate = tf.where(step < self.warmup_steps, warmup_rate, learning_rate)
        lr = tf.where(step > self.total_steps, 0.0, learning_rate, name='learning_rate')
        wandb.log({"lr": lr})
        return lr

learning_rate = CosineScheduler(learning_rate_base=0.001, 
                                total_steps=23000, 
                                warmup_learning_rate=0.0, 
                                warmup_steps=1660)
loss_func = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
optimizer = tfa.optimizers.AdamW(learning_rate,weight_decay=0.1)

I get the following error prompt where it says that weight_decay has multiple arguments

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-12-6f9fd0a9c1cb> in <module>
      1 loss_func = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
----> 2 optimizer = tfa.optimizers.AdamW(learning_rate,weight_decay=0.1)

/opt/conda/lib/python3.7/site-packages/typeguard/__init__.py in wrapper(*args, **kwargs)
    923 
    924     def wrapper(*args, **kwargs):
--> 925         memo = _CallMemo(python_func, _localns, args=args, kwargs=kwargs)
    926         check_argument_types(memo)
    927         retval = func(*args, **kwargs)

/opt/conda/lib/python3.7/site-packages/typeguard/__init__.py in __init__(self, func, frame_locals, args, kwargs, forward_refs_policy)
    126 
    127         if args is not None and kwargs is not None:
--> 128             self.arguments = signature.bind(*args, **kwargs).arguments
    129         else:
    130             assert frame_locals is not None, 'frame must be specified if args or kwargs is None'

/opt/conda/lib/python3.7/inspect.py in bind(*args, **kwargs)
   3013         if the passed arguments can not be bound.
   3014         """
-> 3015         return args[0]._bind(args[1:], kwargs)
   3016 
   3017     def bind_partial(*args, **kwargs):

/opt/conda/lib/python3.7/inspect.py in _bind(self, args, kwargs, partial)
   2954                         raise TypeError(
   2955                             'multiple values for argument {arg!r}'.format(
-> 2956                                 arg=param.name)) from None
   2957 
   2958                     arguments[param.name] = arg_val

TypeError: multiple values for argument 'weight_decay'

What is causing problem and how do I resolve this?

Advertisement

Answer

The problem is that weight_decay is the first positional argument of tfa.optimizers.AdamW. In

optimizer = tfa.optimizers.AdamW(learning_rate,weight_decay=0.1)

you hand over a positional argument and a kw argument weight_decay. This causes the error. According to the documentation, learning rate is the second positional parameter (even though optional), not the first.

Just write

optimizer = tfa.optimizers.AdamW(0.1, learning_rate)

or

optimizer = tfa.optimizers.AdamW(weight_decay=0.1, learning_rate=learning_rate)

or

optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=0.1)
User contributions licensed under: CC BY-SA
7 People found this is helpful
Advertisement