I’m trying to calibrate my CNN model by Sklearn implementation CalibratedClassifierCV
, tried to wrap it as KerasClassifier
and to override the predict function but without success.
someone could say me what I did wrong?
this is the model code:
JavaScript
x
21
21
1
def create_model():
2
model = Sequential()
3
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu', input_shape=(28, 28 ,1) ))
4
model.add(MaxPooling2D(pool_size = (2, 2)))
5
6
model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
7
model.add(MaxPooling2D(pool_size = (2, 2)))
8
9
model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
10
model.add(MaxPooling2D(pool_size = (2, 2)))
11
12
model.add(Flatten())
13
model.add(Dense(128, activation = 'relu'))
14
model.add(Dropout(0.20))
15
16
model.add(Dense(24, activation = 'softmax'))
17
18
model.compile(loss = keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
19
20
return model
21
this is me trying to calibrate it :
JavaScript
1
5
1
model = KerasClassifier(build_fn=create_model,epochs=5, batch_size=128,validation_data=(evalX_cnn, eval_y_cnn))
2
model.fit(trainX_cnn, train_y_cnn)
3
model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit')
4
model_c.fit(valX_cnn, val_y_cnn)
5
the output :
JavaScript
1
21
21
1
-------------------------------------------------------
2
TypeError Traceback (most recent call last)
3
<ipython-input-19-3d3ce9ce4fca> in <module>
4
----> 1 model_c.fit(np.array(valX_cnn), np.array(val_y_cnn))
5
6
~anaconda3libsite-packagessklearncalibration.py in fit(self, X, y, sample_weight)
7
286 pred_method, method_name = _get_prediction_method(base_estimator)
8
287 n_classes = len(self.classes_)
9
--> 288 predictions = _compute_predictions(pred_method, method_name, X, n_classes)
10
289
11
290 calibrated_classifier = _fit_calibrator(
12
13
~anaconda3libsite-packagessklearncalibration.py in _compute_predictions(pred_method, method_name, X, n_classes)
14
575 (X.shape[0], 1).
15
576 """
16
--> 577 predictions = pred_method(X=X)
17
578
18
579 if method_name == "decision_function":
19
20
TypeError: predict_proba() missing 1 required positional argument: 'x'
21
valX_cnn and val_y_cnn are of type np.array.
tried even to override the method:
JavaScript
1
2
1
keras.models.Model.predict_proba = keras.models.Model.predict
2
Advertisement
Answer
The problem is because predict_proba
from KerasClassifier
requires x
as input while predict_proba
method from sklearn accepts X
as input argument (note the difference: X
is not x
).
You can simply overdrive the problem wrapping KerasClassifier
into a new class to correct the predict_proba
method.
JavaScript
1
16
16
1
samples,classes = 100,3
2
3
X = np.random.uniform(0,1, (samples,28,28,1))
4
Y = tf.keras.utils.to_categorical(np.random.randint(0,classes, (samples)))
5
6
class MyKerasClassifier(KerasClassifier):
7
8
def predict_proba(self, X):
9
return self.model.predict(X)
10
11
model = MyKerasClassifier(build_fn=create_model, epochs=3, batch_size=128)
12
model.fit(X, Y)
13
14
model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit')
15
model_c.fit(X, Y)
16