I’m trying to calibrate my CNN model by Sklearn implementation CalibratedClassifierCV, tried to wrap it as KerasClassifier and to override the predict function but without success.
someone could say me what I did wrong?
this is the model code:
def create_model():
    model = Sequential()
    model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu', input_shape=(28, 28 ,1) ))
    model.add(MaxPooling2D(pool_size = (2, 2)))
    model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
    model.add(MaxPooling2D(pool_size = (2, 2)))
    model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
    model.add(MaxPooling2D(pool_size = (2, 2)))
    model.add(Flatten())
    model.add(Dense(128, activation = 'relu'))
    model.add(Dropout(0.20))
    model.add(Dense(24, activation = 'softmax'))
    model.compile(loss = keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
    
    return model
this is me trying to calibrate it :
model = KerasClassifier(build_fn=create_model,epochs=5, batch_size=128,validation_data=(evalX_cnn, eval_y_cnn)) model.fit(trainX_cnn, train_y_cnn) model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit') model_c.fit(valX_cnn, val_y_cnn)
the output :
-------------------------------------------------------
TypeError             Traceback (most recent call last)
<ipython-input-19-3d3ce9ce4fca> in <module>
----> 1 model_c.fit(np.array(valX_cnn), np.array(val_y_cnn))
~anaconda3libsite-packagessklearncalibration.py in fit(self, X, y, sample_weight)
    286             pred_method, method_name = _get_prediction_method(base_estimator)
    287             n_classes = len(self.classes_)
--> 288             predictions = _compute_predictions(pred_method, method_name, X, n_classes)
    289 
    290             calibrated_classifier = _fit_calibrator(
~anaconda3libsite-packagessklearncalibration.py in _compute_predictions(pred_method, method_name, X, n_classes)
    575         (X.shape[0], 1).
    576     """
--> 577     predictions = pred_method(X=X)
    578 
    579     if method_name == "decision_function":
TypeError: predict_proba() missing 1 required positional argument: 'x'
valX_cnn and val_y_cnn are of type np.array.
tried even to override the method:
keras.models.Model.predict_proba = keras.models.Model.predict
Advertisement
Answer
The problem is because predict_proba from KerasClassifier requires x as input while predict_proba method from sklearn accepts X as input argument (note the difference: X is not x).
You can simply overdrive the problem wrapping KerasClassifier into a new class to correct the predict_proba method.
samples,classes = 100,3
X = np.random.uniform(0,1, (samples,28,28,1))
Y = tf.keras.utils.to_categorical(np.random.randint(0,classes, (samples)))
class MyKerasClassifier(KerasClassifier):
  
  def predict_proba(self, X):
      return self.model.predict(X)
model = MyKerasClassifier(build_fn=create_model, epochs=3, batch_size=128)
model.fit(X, Y)
model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit')
model_c.fit(X, Y)
 
						