My DataFrame:
Col X Col Y ID Value A a 'r' 3 A a 'b' 2 A a 'c' 1 B b 'd' 5 B b 's' 6 B b 'd' 7
Output required:
Col X    Col Y    Out
 A         a      {'r':3, 'b':2, 'c':1}
 B         b      {'d': 5, 's': 6, 'd':7}
Approach tried so far:
df = df.set_index(['Col X', 'Col Y', 'ID']).Value
dict_column = {k: df.xs((k, v)).to_dict() for k,v,v2 in df.index}
Advertisement
Answer
Use GroupBy.apply with lambda function:
df['ID'] = df['ID'].str.strip("'")
df1 = (df.groupby(['Col X', 'Col Y'])[['ID','Value']]
        .apply(lambda x: dict(x.to_numpy()))
        .reset_index(name='Out'))
print (df1)
  Col X Col Y                       Out
0     A     a  {'r': 3, 'b': 2, 'c': 1}
1     B     b          {'d': 7, 's': 6}
Duplicated keys not exist in python dictionary. You can aggregate values, e.g. by sum:
df['ID'] = df['ID'].str.strip("'")
df = df.groupby(['Col X', 'Col Y','ID'], as_index=False)['Value'].sum()
print (df)
  Col X Col Y ID  Value
0     A     a  b      2
1     A     a  c      1
2     A     a  r      3
3     B     b  d     12
4     B     b  s      6
df1 = (df.groupby(['Col X', 'Col Y'])[['ID','Value']]
        .apply(lambda x: dict(x.to_numpy()))
        .reset_index(name='Out'))
print (df1)
  Col X Col Y                       Out
0     A     a  {'b': 2, 'c': 1, 'r': 3}
1     B     b         {'d': 12, 's': 6}
