JavaScript
x
65
65
1
import matplotlib.pyplot as plt
2
3
import numpy as np
4
5
import math
6
7
import matplotlib.gridspec as gridspec
8
9
from matplotlib.animation import FuncAnimation
10
11
fig = plt.figure()
12
13
plt.xlabel('X')
14
15
plt.ylabel('Y')
16
17
# limiting the y and x axis
18
plt.ylim(0, 10)
19
20
plt.xlim(0, 10)
21
22
def xy_plot1(u, theta):
23
24
y_arr1= []
25
x_arr1 = []
26
27
# displacement in the y_direction is zero
28
x_disp = (u*u)*(math.sin(2*theta))/9.8 # disp_x = (u^2)*sin(2theta)/g {horizontal range}
29
30
x = 0 # distance from the origin
31
32
while(x <= x_disp):
33
# below is the equation of path of projectile
34
y = (x*(math.tan(theta))) - ((9.8*x*x)/(2*pow((u*math.cos(theta)), 2)))
35
y_arr1.append(y)
36
x_arr1.append(x)
37
x = x + 0.1 # basically x = x + dx
38
39
plt.plot(x_arr1, y_arr1)
40
41
def xy_plot2(u, theta):
42
43
y_arr2 = []
44
x_arr2 = []
45
46
# displacement in the y_direction is zero
47
x_disp = (u*u)*(math.sin(2*theta))/9.8 # disp_x = (u^2)*sin(2theta)/g {horizontal range}
48
49
x = 0 # distance from the origin
50
dx = 0.1
51
while(x <= x_disp):
52
# below is the equation of path of projectile
53
y = (x*(math.tan(theta))) - ((9.8*x*x)/(2*pow((u*math.cos(theta)), 2)))
54
y_arr2.append(y)
55
x_arr2.append(x)
56
x = x + dx
57
58
plt.plot(x_arr2, y_arr2)
59
60
xy_plot1(10, 60)
61
62
xy_plot2(10, 30)
63
64
plt.show()
65
Advertisement
Answer
Be careful! Your theta argument for the xyplot() function is in degrees, but inside your function, the math.sin() function takes the argument for the angle in units of radians. The easiest fix is to provide your theta argument in units of radians instead of degrees.
You also don’t need both functions if they do the exact same thing, as plt.plot() will draw subsequent projectile curves along with previous ones as long as you don’t clear the plot.
JavaScript
1
38
38
1
import matplotlib.pyplot as plt
2
import numpy as np
3
import math
4
import matplotlib.gridspec as gridspec
5
from matplotlib.animation import FuncAnimation
6
7
fig = plt.figure()
8
9
plt.xlabel('X')
10
plt.ylabel('Y')
11
12
# limiting the y and x axis
13
plt.ylim(0, 10)
14
plt.xlim(0, 10)
15
16
def xy_plot(u, theta):
17
y_arr2 = []
18
x_arr2 = []
19
20
# displacement in the y_direction is zero
21
x_disp = (u*u)*(math.sin(2*theta))/9.8 # disp_x = (u^2)*sin(2theta)/g {horizontal range}
22
23
x = 0 # distance from the origin
24
dx=0.1
25
while(x <= x_disp):
26
# below is the equation of path of projectile
27
y = (x*(math.tan(theta))) - ((9.8*x*x)/(2*pow((u*math.cos(theta)), 2)))
28
y_arr2.append(y)
29
x_arr2.append(x)
30
x = x + dx
31
32
plt.plot(x_arr2, y_arr2)
33
34
# be careful about using degrees versus radians!!
35
xy_plot(10, math.pi/3)
36
xy_plot(10, math.pi/6)
37
plt.show()
38