I’m trying to build a Siamese Neural Network to analyze the MNIST dataset, however when trying to fit the model to the dataset I encounter this problem according to which I have training data and labels shapes’ mismatch. I tried changing the loss function as well as tried to squeeze the labels array, and neither of “solutions” worked.
Here are the train and labels arrays’ shapes:
pairTrain shape: (120000, 2, 28, 28, 1) labelTrain shape: (120000, 1)
Here’s my model:
def build_model(input_shape, embedDim=48): inputs = Input(input_shape) x = Conv2D(64, (2, 2), padding="same", activation="relu", input_shape=input_shape)(inputs) x = MaxPooling2D()(x) x = Dropout(0.3)(x) x = Conv2D(32, (2, 2), padding="same", activation="relu")(x) x = MaxPooling2D()(x) x = Dropout(0.3)(x) x = Conv2D(16, (2, 2), padding="same", activation="relu")(x) x = MaxPooling2D()(x) x = Dropout(0.3)(x) outputs = Flatten()(x) outputs = Dense(embedDim)(outputs) model = Model(inputs, outputs) return model
And finally here’s the code that generates the error itself:
imgA = Input(shape=(28, 28, 1)) imgB = Input(shape=(28, 28, 1)) featA = build_model((28, 28, 1))(imgA) featB = build_model((28, 28, 1))(imgB) distance = Lambda(euclidean_distance)([featA, featB]) output = Dense(1, activation="sigmoid")(distance) model = Model([imgA, imgB], output) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) history = model.fit( [pairTrain[:, 0], pairTrain[:, 1]], labelTrain, validation_data=[[pairTest[:, 0], pairTest[:, 1]], labelTest], batch_size=64, epochs=10 ) model.save("output/siamese_model")
Please help me to resolve the problem.
Advertisement
Answer
I was not able to reproduce the error using the below code. I suspect that your labels shape is different than the one you reported or it does not contain strictly binary data (0s and 1s) only.
Also, you should use tf.keras.losses.BinaryCrossentropy
instead of tf.keras.losses.CategoricalCrossentropy
as your labels should be binary with the sigmoid
activation in the last layer.
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Input, Flatten, Dense, Lambda from tensorflow.keras.models import Model import tensorflow as tf def build_model(input_shape, embedDim=48): inputs = Input(input_shape) x = Conv2D(64, (2, 2), padding="same", activation="relu", input_shape=input_shape)(inputs) x = MaxPooling2D()(x) x = Dropout(0.3)(x) x = Conv2D(32, (2, 2), padding="same", activation="relu")(x) x = MaxPooling2D()(x) x = Dropout(0.3)(x) x = Conv2D(16, (2, 2), padding="same", activation="relu")(x) x = MaxPooling2D()(x) x = Dropout(0.3)(x) outputs = Flatten()(x) outputs = Dense(embedDim)(outputs) model = Model(inputs, outputs) return model imgA = Input(shape=(28, 28, 1)) imgB = Input(shape=(28, 28, 1)) featA = build_model((28, 28, 1))(imgA) featB = build_model((28, 28, 1))(imgB) distance = Lambda(lambda x: x[0]-x[1])([featA, featB]) output = Dense(1, activation="sigmoid")(distance) model = Model([imgA, imgB], output) pairTrain = tf.random.uniform((10, 2, 28, 28, 1)) labelTrain = tf.random.uniform(shape=(10, 1), minval=0, maxval=2, dtype=tf.int32) pairTest = tf.random.uniform((10, 2, 28, 28, 1)) labelTest = tf.random.uniform(shape=(10, 1), minval=0, maxval=2, dtype=tf.int32) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit( [pairTrain[:, 0], pairTrain[:, 1]], labelTrain, validation_data=[[pairTest[:, 0], pairTest[:, 1]], labelTest], batch_size=64, epochs=10 ) model.save("output/siamese_model")
Epoch 1/10 1/1 [==============================] - 2s 2s/step - loss: 0.7061 - accuracy: 0.5000 - val_loss: 0.6862 - val_accuracy: 0.7000 Epoch 2/10 1/1 [==============================] - 0s 80ms/step - loss: 0.7882 - accuracy: 0.4000 - val_loss: 0.6751 - val_accuracy: 0.6000 Epoch 3/10 1/1 [==============================] - 0s 81ms/step - loss: 0.6358 - accuracy: 0.5000 - val_loss: 0.6755 - val_accuracy: 0.6000 Epoch 4/10 1/1 [==============================] - 0s 79ms/step - loss: 0.7027 - accuracy: 0.5000 - val_loss: 0.6759 - val_accuracy: 0.6000 Epoch 5/10 1/1 [==============================] - 0s 82ms/step - loss: 0.6970 - accuracy: 0.4000 - val_loss: 0.6752 - val_accuracy: 0.6000 Epoch 6/10 1/1 [==============================] - 0s 83ms/step - loss: 0.7564 - accuracy: 0.4000 - val_loss: 0.6779 - val_accuracy: 0.6000 Epoch 7/10 1/1 [==============================] - 0s 73ms/step - loss: 0.7123 - accuracy: 0.6000 - val_loss: 0.6818 - val_accuracy: 0.6000