I am trying to optimize a convolutional neural network with Bayesian Optimization algorithm provided in keras tuner library. When I perform the line: tuner_cnn.search(datagen.flow(X_trainRusReshaped,Y_trainRusHot), epochs=50, batch_size=256) I encounter this error: InvalidArgumentError: Graph execution error One-Hot-Encode y_train and y_test as the following: I defined my model builder like that: perform the tuner search: I also tried to do: But it does
Tag: keras-tuner
How to hypertune input shape using keras tuner?
I am trying to hypertune the input shape of an LSTM model based on the different values of timesteps. However, I am facing an issue. While initializing the model, the default value of timesteps (which is 2) is chosen, and accordingly, the build_model.scaled_train is created of shape (4096, 2, 64). Thus the value of input_shape during initialization is (2, 64).