I am trying to create an autoencoder for:
- Train the model
- Split encoder and decoder
- Visualise compressed data (encoder)
- Use arbitrary compressed data to get the output (decoder)
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras import backend as K from keras.datasets import mnist import numpy as np (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_train = x_train[:100,:,:,] x_test = x_test.astype('float32') / 255. x_test = x_train x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(32, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) # at this point the representation is (7, 7, 32) decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(decoder) x = Conv2D(32, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded(encoded(input_img))) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=10, batch_size=128, shuffle=True, validation_data=(x_test, x_test), #callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)] )
How to split train it and split with the trained weights?
Advertisement
Answer
Make encoder:
input_img = Input(shape=(28, 28, 1)) x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(32, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) encoder = Model(input_img, encoded)
Make decoder:
decoder_input= Input(shape_equal_to_encoder_output_shape) decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder_input) x = UpSampling2D((2, 2))(decoder) x = Conv2D(32, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) decoder = Model(decoder_input, decoded)
Make autoencoder:
auto_input = Input(shape=(28,28,1)) encoded = encoder(auto_input) decoded = decoder(encoded) auto_encoder = Model(auto_input, decoded)
Now you can use any of them any way you want to.
- train the autoencoder
- use the encoder and decoder