>> masks = [[1,1],[0,0]] >> [np.ma.masked_array(data=np.array([1.0,2.0]), mask=m, fill_value=np.nan).mean() for m in masks] [masked, 1.5]
I’d like to replace the masked
result with nan
. Is there a way to do that directly with numpy’s masked_array
?
Advertisement
Answer
In [232]: M = np.ma.masked_array(data=np.array([1.0,2.0]),mask=[True, False])
filled
method replaces the masked values with the fill value:
In [233]: M.filled() Out[233]: array([1.e+20, 2.e+00]) In [234]: M.filled(np.nan) # or with a value of your choice. Out[234]: array([nan, 2.])
Or as you do, specify the fill value when defining the array:
In [235]: M = np.ma.masked_array(data=np.array([1.0,2.0]),mask=[True, False], ...: fill_value=np.nan) In [236]: M Out[236]: masked_array(data=[--, 2.0], mask=[ True, False], fill_value=nan) In [237]: M.filled() Out[237]: array([nan, 2.])
The masked mean method skips over the filled values:
In [238]: M.mean() Out[238]: 2.0 In [239]: M.filled().mean() Out[239]: nan In [241]: np.nanmean(M.filled()) # so does the `nanmean` function In [242]: M.data.mean() # mean of the underlying data Out[242]: 1.5