I can’t simplify my data so I put them entirely. I would like to build the best possible team of 11 players according to the “niveau” column. Each “id” has a “niveau” note for the “statut” column. I think it would be necessary to test all the possible combinations of “niveau” without there being any “id” duplicates in order to obtain the best average level of the 11 players, but I don’t know how to proceed. Do you have an idea please? Thank you
import pandas as pd data = {'statut': {0: 'titulaire_01', 1: 'titulaire_01', 2: 'titulaire_01', 3: 'titulaire_01', 4: 'titulaire_01', 5: 'titulaire_01', 6: 'titulaire_01', 7: 'titulaire_01', 8: 'titulaire_02', 9: 'titulaire_02', 10: 'titulaire_02', 11: 'titulaire_02', 12: 'titulaire_02', 13: 'titulaire_02', 14: 'titulaire_02', 15: 'titulaire_02', 16: 'titulaire_02', 17: 'titulaire_02', 18: 'titulaire_02', 19: 'titulaire_02', 20: 'titulaire_02', 21: 'titulaire_02', 22: 'titulaire_02', 23: 'titulaire_02', 24: 'titulaire_02', 25: 'titulaire_02', 26: 'titulaire_02', 27: 'titulaire_02', 28: 'titulaire_03', 29: 'titulaire_03', 30: 'titulaire_03', 31: 'titulaire_03', 32: 'titulaire_03', 33: 'titulaire_03', 34: 'titulaire_03', 35: 'titulaire_03', 36: 'titulaire_03', 37: 'titulaire_03', 38: 'titulaire_03', 39: 'titulaire_03', 40: 'titulaire_03', 41: 'titulaire_03', 42: 'titulaire_03', 43: 'titulaire_03', 44: 'titulaire_03', 45: 'titulaire_03', 46: 'titulaire_03', 47: 'titulaire_03', 48: 'titulaire_04', 49: 'titulaire_04', 50: 'titulaire_04', 51: 'titulaire_04', 52: 'titulaire_04', 53: 'titulaire_04', 54: 'titulaire_04', 55: 'titulaire_04', 56: 'titulaire_04', 57: 'titulaire_05', 58: 'titulaire_05', 59: 'titulaire_05', 60: 'titulaire_05', 61: 'titulaire_05', 62: 'titulaire_05', 63: 'titulaire_05', 64: 'titulaire_05', 65: 'titulaire_05', 66: 'titulaire_05', 67: 'titulaire_06', 68: 'titulaire_06', 69: 'titulaire_06', 70: 'titulaire_06', 71: 'titulaire_06', 72: 'titulaire_06', 73: 'titulaire_06', 74: 'titulaire_06', 75: 'titulaire_06', 76: 'titulaire_06', 77: 'titulaire_06', 78: 'titulaire_06', 79: 'titulaire_07', 80: 'titulaire_07', 81: 'titulaire_07', 82: 'titulaire_07', 83: 'titulaire_07', 84: 'titulaire_07', 85: 'titulaire_07', 86: 'titulaire_07', 87: 'titulaire_07', 88: 'titulaire_07', 89: 'titulaire_07', 90: 'titulaire_07', 91: 'titulaire_07', 92: 'titulaire_07', 93: 'titulaire_07', 94: 'titulaire_07', 95: 'titulaire_07', 96: 'titulaire_07', 97: 'titulaire_07', 98: 'titulaire_08', 99: 'titulaire_08', 100: 'titulaire_08', 101: 'titulaire_08', 102: 'titulaire_08', 103: 'titulaire_08', 104: 'titulaire_08', 105: 'titulaire_08', 106: 'titulaire_08', 107: 'titulaire_08', 108: 'titulaire_08', 109: 'titulaire_08', 110: 'titulaire_08', 111: 'titulaire_08', 112: 'titulaire_08', 113: 'titulaire_08', 114: 'titulaire_08', 115: 'titulaire_08', 116: 'titulaire_08', 117: 'titulaire_09', 118: 'titulaire_09', 119: 'titulaire_09', 120: 'titulaire_09', 121: 'titulaire_09', 122: 'titulaire_09', 123: 'titulaire_09', 124: 'titulaire_09', 125: 'titulaire_09', 126: 'titulaire_09', 127: 'titulaire_09', 128: 'titulaire_09', 129: 'titulaire_09', 130: 'titulaire_09', 131: 'titulaire_09', 132: 'titulaire_09', 133: 'titulaire_09', 134: 'titulaire_09', 135: 'titulaire_09', 136: 'titulaire_10', 137: 'titulaire_10', 138: 'titulaire_10', 139: 'titulaire_10', 140: 'titulaire_10', 141: 'titulaire_10', 142: 'titulaire_10', 143: 'titulaire_10', 144: 'titulaire_10', 145: 'titulaire_10', 146: 'titulaire_10', 147: 'titulaire_10', 148: 'titulaire_10', 149: 'titulaire_10', 150: 'titulaire_10', 151: 'titulaire_10', 152: 'titulaire_10', 153: 'titulaire_10', 154: 'titulaire_10', 155: 'titulaire_10', 156: 'titulaire_10', 157: 'titulaire_10', 158: 'titulaire_11', 159: 'titulaire_11', 160: 'titulaire_11', 161: 'titulaire_11', 162: 'titulaire_11', 163: 'titulaire_11', 164: 'titulaire_11', 165: 'titulaire_11', 166: 'titulaire_11', 167: 'titulaire_11', 168: 'titulaire_11', 169: 'titulaire_11', 170: 'titulaire_11', 171: 'titulaire_11', 172: 'titulaire_11', 173: 'titulaire_11', 174: 'titulaire_11', 175: 'titulaire_11', 176: 'titulaire_11', 177: 'titulaire_11', 178: 'titulaire_11', 179: 'titulaire_11'}, 'id': {0: 2002134607, 1: 2002043469, 2: 67156610, 3: 73201503, 4: 2000165962, 5: 2000143545, 6: 2002042688, 7: 2000055323, 8: 49054631, 9: 48031358, 10: 49048802, 11: 2002042816, 12: 2000045508, 13: 73201458, 14: 67191910, 15: 2002134617, 16: 2002042628, 17: 2000023214, 18: 2000165961, 19: 2000121963, 20: 2000045487, 21: 2000006106, 22: 14196664, 23: 2000055604, 24: 2002043613, 25: 49054633, 26: 49037900, 27: 2002043635, 28: 48031358, 29: 49037900, 30: 2002043635, 31: 2000121963, 32: 2000165961, 33: 67191910, 34: 2002042816, 35: 73201458, 36: 49054633, 37: 2000045487, 38: 2002043613, 39: 2000006106, 40: 2000055604, 41: 2000023214, 42: 2000045508, 43: 2002042628, 44: 14196664, 45: 2002134617, 46: 49054631, 47: 49048802, 48: 49040506, 49: 85126966, 50: 83169864, 51: 2002043476, 52: 2000045508, 53: 2002043613, 54: 2002042669, 55: 2000023214, 56: 73201460, 57: 67211095, 58: 83169864, 59: 13196665, 60: 2000055604, 61: 2000011411, 62: 2000165964, 63: 73201458, 64: 2002042939, 65: 2002043635, 66: 2002043613, 67: 2000045698, 68: 2002042722, 69: 2000132382, 70: 49054633, 71: 2002042845, 72: 2000045520, 73: 73201505, 74: 73201458, 75: 70137157, 76: 49040506, 77: 2002043635, 78: 2000143548, 79: 73200890, 80: 49060705, 81: 2000045543, 82: 2000045698, 83: 2000011617, 84: 2002042722, 85: 2002042642, 86: 2000113673, 87: 85137101, 88: 19217413, 89: 2000147147, 90: 2002042845, 91: 2002043003, 92: 2002042627, 93: 2002042966, 94: 2000047331, 95: 2002042666, 96: 2000134665, 97: 2002042690, 98: 2000011617, 99: 2000045698, 100: 49060705, 101: 2000047331, 102: 2000147147, 103: 2000134665, 104: 2000113673, 105: 73200890, 106: 2002042845, 107: 19217413, 108: 2000045543, 109: 2002043003, 110: 2002042722, 111: 2002042666, 112: 2002042966, 113: 2002042627, 114: 2002042690, 115: 2002042642, 116: 85137101, 117: 2000134665, 118: 2002042666, 119: 2002042627, 120: 2000047331, 121: 2002042966, 122: 2002043003, 123: 2002042690, 124: 2002042845, 125: 2000147147, 126: 19217413, 127: 85137101, 128: 2002042722, 129: 2002042642, 130: 2000045543, 131: 2000011617, 132: 2000113673, 133: 49060705, 134: 73200890, 135: 2000045698, 136: 62124125, 137: 2002043171, 138: 2000165960, 139: 2002134617, 140: 2002042690, 141: 2000047311, 142: 2000105477, 143: 2002042627, 144: 2000037444, 145: 49060705, 146: 2002042642, 147: 2002134611, 148: 2002043003, 149: 2002042966, 150: 73201412, 151: 2002042813, 152: 67256520, 153: 2000047306, 154: 2002042983, 155: 12092876, 156: 96026541, 157: 2002043636, 158: 2000165960, 159: 49060705, 160: 12092876, 161: 2002042690, 162: 2002134617, 163: 2002042642, 164: 73201412, 165: 62124125, 166: 2000105477, 167: 2002042966, 168: 96026541, 169: 2002042983, 170: 2000047311, 171: 2002043171, 172: 2002134611, 173: 2002042813, 174: 2000047306, 175: 67256520, 176: 2002043003, 177: 2002043636, 178: 2002042627, 179: 2000037444}, 'niveau': {0: 13.605263157894736, 1: 25.13157894736842, 2: 22.473684210526315, 3: 16.236842105263158, 4: 15.789473684210526, 5: 15.342105263157896, 6: 28.394736842105264, 7: 14.789473684210526, 8: 16.727272727272727, 9: 25.741935483870968, 10: 17.424242424242426, 11: 28.03030303030303, 12: 16.696969696969695, 13: 16.636363636363637, 14: 25.454545454545453, 15: 16.484848484848484, 16: 30.606060606060606, 17: 16.424242424242426, 18: 17.151515151515152, 19: 17.151515151515152, 20: 19.151515151515152, 21: 22.03030303030303, 22: 25.272727272727273, 23: 19.818181818181817, 24: 25.12121212121212, 25: 20.272727272727273, 26: 28.09090909090909, 27: 26.0, 28: 26.06451612903226, 29: 28.545454545454547, 30: 26.242424242424242, 31: 17.454545454545453, 32: 17.606060606060606, 33: 25.757575757575758, 34: 28.333333333333332, 35: 17.09090909090909, 36: 20.575757575757574, 37: 19.454545454545453, 38: 25.272727272727273, 39: 21.575757575757574, 40: 20.12121212121212, 41: 15.969696969696969, 42: 16.393939393939394, 43: 30.303030303030305, 44: 25.515151515151516, 45: 16.939393939393938, 46: 17.03030303030303, 47: 17.87878787878788, 48: 18.142857142857142, 49: 24.37142857142857, 50: 24.057142857142857, 51: 25.4, 52: 15.17142857142857, 53: 23.34285714285714, 54: 28.142857142857142, 55: 15.085714285714285, 56: 16.257142857142856, 57: 23.34285714285714, 58: 23.771428571428572, 59: 22.6, 60: 18.285714285714285, 61: 18.685714285714287, 62: 16.514285714285716, 63: 15.82857142857143, 64: 25.885714285714286, 65: 26.142857142857142, 66: 23.485714285714284, 67: 17.564102564102566, 68: 28.384615384615383, 69: 17.153846153846153, 70: 18.205128205128204, 71: 25.46153846153846, 72: 15.512820512820513, 73: 14.615384615384615, 74: 14.846153846153847, 75: 17.564102564102566, 76: 17.487179487179485, 77: 24.974358974358974, 78: 14.461538461538462, 79: 22.5, 80: 20.0625, 81: 19.84375, 82: 18.9375, 83: 20.25, 84: 31.59375, 85: 33.1875, 86: 18.34375, 87: 24.71875, 88: 26.03125, 89: 18.09375, 90: 28.34375, 91: 29.1875, 92: 32.46875, 93: 30.09375, 94: 18.5625, 95: 31.9375, 96: 15.28125, 97: 32.3125, 98: 19.9375, 99: 18.625, 100: 19.8125, 101: 18.8125, 102: 18.40625, 103: 15.75, 104: 18.03125, 105: 22.1875, 106: 28.09375, 107: 26.34375, 108: 20.15625, 109: 29.4375, 110: 31.34375, 111: 31.78125, 112: 29.84375, 113: 32.21875, 114: 32.625, 115: 33.5, 116: 24.46875, 117: 15.870967741935484, 118: 31.483870967741936, 119: 32.354838709677416, 120: 18.29032258064516, 121: 29.741935483870968, 122: 29.677419354838708, 123: 32.41935483870968, 124: 28.129032258064516, 125: 18.032258064516128, 126: 26.06451612903226, 127: 24.70967741935484, 128: 31.838709677419356, 129: 33.61290322580645, 130: 20.35483870967742, 131: 19.129032258064516, 132: 18.580645161290324, 133: 20.419354838709676, 134: 22.483870967741936, 135: 19.451612903225808, 136: 23.59375, 137: 30.78125, 138: 19.28125, 139: 16.03125, 140: 31.78125, 141: 19.625, 142: 19.09375, 143: 32.0625, 144: 20.65625, 145: 20.625, 146: 32.96875, 147: 20.71875, 148: 29.15625, 149: 29.5, 150: 17.875, 151: 29.0625, 152: 21.28125, 153: 18.84375, 154: 28.4375, 155: 24.84375, 156: 26.53125, 157: 29.0625, 158: 18.8125, 159: 20.375, 160: 24.53125, 161: 32.09375, 162: 15.5625, 163: 33.28125, 164: 18.34375, 165: 23.125, 166: 18.625, 167: 29.25, 168: 26.84375, 169: 28.125, 170: 19.3125, 171: 30.53125, 172: 20.875, 173: 28.75, 174: 18.53125, 175: 21.03125, 176: 29.40625, 177: 29.375, 178: 31.8125, 179: 20.34375}} df = pd.DataFrame(data) print(df) statut id niveau 0 titulaire_01 2002134607 13.605263 1 titulaire_01 2002043469 25.131579 2 titulaire_01 67156610 22.473684 3 titulaire_01 73201503 16.236842 4 titulaire_01 2000165962 15.789474 .. ... ... ... 175 titulaire_11 67256520 21.031250 176 titulaire_11 2002043003 29.406250 177 titulaire_11 2002043636 29.375000 178 titulaire_11 2002042627 31.812500 179 titulaire_11 2000037444 20.343750
if I do groupby(“statut”) keeping the max of the “niveau” column I have “id” duplicates, an “id” can be in several “titulaire_01” and “titulaire_02” etc.. the result should be 11 rows with no duplicates
Advertisement
Answer
It looks like an optimization problem, you can pivot
your data to a rectangular format, then use scipy.optimize.linear_sum_assignment
:
from scipy.optimize import linear_sum_assignment df2 = df.pivot_table(index='id', columns='statut', values='niveau', fill_value=0) # or fill_value=-np.inf ID, statut = linear_sum_assignment(df2, maximize=True) out = (pd.DataFrame({'statut': df2.columns[statut], 'id': df2.index[ID]}) .sort_values(by='statut', ignore_index=True) )
output:
statut id 0 titulaire_01 2002042688 1 titulaire_02 2002042628 2 titulaire_03 49037900 3 titulaire_04 2002042669 4 titulaire_05 2002043635 5 titulaire_06 2002042722 6 titulaire_07 2002042666 7 titulaire_08 2002042690 8 titulaire_09 2002042627 9 titulaire_10 2002043171 10 titulaire_11 2002042642