I can’t simplify my data so I put them entirely. I would like to build the best possible team of 11 players according to the “niveau” column. Each “id” has a “niveau” note for the “statut” column. I think it would be necessary to test all the possible combinations of “niveau” without there being any “id” duplicates in order to obtain the best average level of the 11 players, but I don’t know how to proceed. Do you have an idea please? Thank you
import pandas as pd
data = {'statut': {0: 'titulaire_01', 1: 'titulaire_01', 2: 'titulaire_01', 3: 'titulaire_01', 4: 'titulaire_01', 5: 'titulaire_01', 6: 'titulaire_01', 7: 'titulaire_01', 8: 'titulaire_02', 9: 'titulaire_02', 10: 'titulaire_02', 11: 'titulaire_02', 12: 'titulaire_02', 13: 'titulaire_02', 14: 'titulaire_02', 15: 'titulaire_02', 16: 'titulaire_02', 17: 'titulaire_02', 18: 'titulaire_02', 19: 'titulaire_02', 20: 'titulaire_02', 21: 'titulaire_02', 22: 'titulaire_02', 23: 'titulaire_02', 24: 'titulaire_02', 25: 'titulaire_02', 26: 'titulaire_02', 27: 'titulaire_02', 28: 'titulaire_03', 29: 'titulaire_03', 30: 'titulaire_03', 31: 'titulaire_03', 32: 'titulaire_03', 33: 'titulaire_03', 34: 'titulaire_03', 35: 
'titulaire_03', 36: 'titulaire_03', 37: 'titulaire_03', 38: 'titulaire_03', 39: 'titulaire_03', 40: 'titulaire_03', 41: 'titulaire_03', 42: 'titulaire_03', 43: 'titulaire_03', 44: 'titulaire_03', 45: 'titulaire_03', 46: 'titulaire_03', 47: 'titulaire_03', 48: 'titulaire_04', 49: 'titulaire_04', 50: 'titulaire_04', 51: 'titulaire_04', 52: 'titulaire_04', 53: 'titulaire_04', 54: 'titulaire_04', 55: 'titulaire_04', 56: 'titulaire_04', 57: 'titulaire_05', 58: 'titulaire_05', 59: 'titulaire_05', 60: 'titulaire_05', 61: 'titulaire_05', 62: 'titulaire_05', 63: 'titulaire_05', 64: 'titulaire_05', 65: 'titulaire_05', 66: 'titulaire_05', 67: 'titulaire_06', 68: 'titulaire_06', 69: 'titulaire_06', 70: 'titulaire_06', 71: 'titulaire_06', 72: 'titulaire_06', 73: 'titulaire_06', 74: 'titulaire_06', 75: 'titulaire_06', 76: 'titulaire_06', 77: 'titulaire_06', 78: 'titulaire_06', 79: 'titulaire_07', 80: 'titulaire_07', 81: 'titulaire_07', 82: 'titulaire_07', 83: 'titulaire_07', 84: 'titulaire_07', 85: 'titulaire_07', 86: 'titulaire_07', 87: 'titulaire_07', 88: 'titulaire_07', 89: 'titulaire_07', 90: 'titulaire_07', 91: 'titulaire_07', 92: 'titulaire_07', 93: 'titulaire_07', 94: 'titulaire_07', 95: 'titulaire_07', 96: 'titulaire_07', 97: 'titulaire_07', 98: 'titulaire_08', 99: 'titulaire_08', 100: 'titulaire_08', 101: 'titulaire_08', 102: 'titulaire_08', 103: 'titulaire_08', 104: 'titulaire_08', 105: 'titulaire_08', 106: 'titulaire_08', 107: 'titulaire_08', 108: 'titulaire_08', 109: 'titulaire_08', 110: 'titulaire_08', 111: 'titulaire_08', 112: 'titulaire_08', 113: 'titulaire_08', 114: 'titulaire_08', 115: 'titulaire_08', 116: 'titulaire_08', 117: 'titulaire_09', 118: 'titulaire_09', 119: 'titulaire_09', 120: 'titulaire_09', 121: 'titulaire_09', 122: 'titulaire_09', 123: 'titulaire_09', 124: 'titulaire_09', 125: 'titulaire_09', 126: 'titulaire_09', 127: 'titulaire_09', 128: 'titulaire_09', 129: 'titulaire_09', 130: 'titulaire_09', 131: 'titulaire_09', 132: 'titulaire_09', 133: 'titulaire_09', 134: 'titulaire_09', 135: 'titulaire_09', 136: 'titulaire_10', 137: 'titulaire_10', 138: 'titulaire_10', 139: 'titulaire_10', 140: 'titulaire_10', 141: 'titulaire_10', 142: 'titulaire_10', 143: 'titulaire_10', 144: 'titulaire_10', 145: 'titulaire_10', 146: 'titulaire_10', 147: 'titulaire_10', 148: 'titulaire_10', 149: 'titulaire_10', 150: 'titulaire_10', 151: 'titulaire_10', 152: 'titulaire_10', 153: 'titulaire_10', 154: 'titulaire_10', 155: 'titulaire_10', 156: 'titulaire_10', 157: 'titulaire_10', 158: 'titulaire_11', 159: 'titulaire_11', 160: 'titulaire_11', 161: 'titulaire_11', 162: 'titulaire_11', 163: 'titulaire_11', 164: 'titulaire_11', 165: 'titulaire_11', 166: 'titulaire_11', 167: 'titulaire_11', 168: 'titulaire_11', 169: 'titulaire_11', 170: 'titulaire_11', 171: 'titulaire_11', 172: 'titulaire_11', 173: 'titulaire_11', 174: 'titulaire_11', 175: 'titulaire_11', 176: 'titulaire_11', 177: 'titulaire_11', 178: 'titulaire_11', 179: 'titulaire_11'}, 'id': {0: 2002134607, 1: 2002043469, 2: 67156610, 3: 73201503, 4: 2000165962, 5: 2000143545, 6: 2002042688, 7: 2000055323, 8: 49054631, 9: 48031358, 10: 49048802, 11: 2002042816, 12: 2000045508, 13: 73201458, 14: 67191910, 15: 2002134617, 16: 2002042628, 17: 2000023214, 18: 2000165961, 19: 2000121963, 20: 2000045487, 21: 2000006106, 22: 14196664, 23: 2000055604, 24: 2002043613, 25: 49054633, 26: 49037900, 27: 2002043635, 28: 48031358, 29: 49037900, 30: 2002043635, 31: 2000121963, 32: 2000165961, 33: 67191910, 34: 2002042816, 35: 73201458, 36: 49054633, 37: 2000045487, 38: 2002043613, 39: 2000006106, 40: 2000055604, 41: 2000023214, 42: 2000045508, 43: 2002042628, 44: 14196664, 45: 2002134617, 46: 49054631, 47: 49048802, 48: 49040506, 49: 85126966, 50: 83169864, 51: 2002043476, 52: 2000045508, 53: 2002043613, 54: 2002042669, 55: 2000023214, 56: 73201460, 57: 67211095, 58: 83169864, 59: 13196665, 60: 2000055604, 61: 2000011411, 62: 2000165964, 63: 73201458, 64: 2002042939, 65: 2002043635, 66: 2002043613, 67: 2000045698, 68: 2002042722, 69: 2000132382, 70: 49054633, 71: 2002042845, 72: 2000045520, 73: 73201505, 74: 73201458, 75: 70137157, 76: 49040506, 77: 2002043635, 78: 2000143548, 79: 73200890, 80: 49060705, 81: 2000045543, 82: 2000045698, 
83: 2000011617, 84: 2002042722, 85: 2002042642, 86: 2000113673, 87: 85137101, 88: 19217413, 89: 2000147147, 90: 2002042845, 91: 2002043003, 92: 2002042627, 93: 2002042966, 94: 2000047331, 95: 2002042666, 96: 2000134665, 97: 2002042690, 98: 2000011617, 99: 2000045698, 100: 49060705, 101: 2000047331, 102: 2000147147, 103: 2000134665, 104: 2000113673, 105: 73200890, 106: 2002042845, 107: 19217413, 108: 2000045543, 109: 2002043003, 110: 2002042722, 111: 2002042666, 112: 2002042966, 113: 2002042627, 114: 2002042690, 115: 2002042642, 116: 85137101, 117: 2000134665, 118: 2002042666, 119: 2002042627, 120: 2000047331, 121: 2002042966, 122: 2002043003, 123: 2002042690, 124: 2002042845, 125: 2000147147, 126: 19217413, 127: 85137101, 128: 2002042722, 129: 2002042642, 130: 2000045543, 131: 2000011617, 132: 2000113673, 133: 49060705, 134: 73200890, 135: 2000045698, 136: 62124125, 137: 2002043171, 138: 2000165960, 139: 2002134617, 140: 2002042690, 141: 2000047311, 142: 2000105477, 143: 2002042627, 144: 2000037444, 145: 49060705, 146: 2002042642, 147: 2002134611, 148: 2002043003, 149: 2002042966, 150: 73201412, 151: 2002042813, 152: 67256520, 153: 2000047306, 154: 2002042983, 155: 12092876, 156: 96026541, 157: 2002043636, 158: 2000165960, 159: 49060705, 160: 12092876, 161: 2002042690, 162: 2002134617, 163: 2002042642, 164: 73201412, 165: 62124125, 166: 2000105477, 167: 2002042966, 168: 96026541, 169: 2002042983, 170: 2000047311, 171: 2002043171, 172: 2002134611, 173: 2002042813, 174: 2000047306, 175: 67256520, 176: 2002043003, 177: 2002043636, 178: 2002042627, 179: 2000037444}, 'niveau': {0: 13.605263157894736, 1: 25.13157894736842, 2: 22.473684210526315, 3: 16.236842105263158, 4: 15.789473684210526, 5: 15.342105263157896, 6: 28.394736842105264, 7: 14.789473684210526, 8: 16.727272727272727, 9: 25.741935483870968, 10: 17.424242424242426, 11: 28.03030303030303, 12: 16.696969696969695, 13: 16.636363636363637, 14: 25.454545454545453, 15: 16.484848484848484, 16: 30.606060606060606, 17: 16.424242424242426, 18: 17.151515151515152, 19: 17.151515151515152, 20: 19.151515151515152, 21: 22.03030303030303, 22: 25.272727272727273, 23: 19.818181818181817, 24: 25.12121212121212, 25: 20.272727272727273, 26: 28.09090909090909, 27: 26.0, 28: 26.06451612903226, 29: 28.545454545454547, 30: 26.242424242424242, 31: 17.454545454545453, 32: 17.606060606060606, 33: 25.757575757575758, 34: 28.333333333333332, 35: 17.09090909090909, 36: 20.575757575757574, 37: 19.454545454545453, 38: 25.272727272727273, 39: 21.575757575757574, 40: 20.12121212121212, 41: 15.969696969696969, 42: 16.393939393939394, 43: 30.303030303030305, 44: 25.515151515151516, 45: 16.939393939393938, 46: 17.03030303030303, 47: 17.87878787878788, 48: 18.142857142857142, 49: 24.37142857142857, 50: 24.057142857142857, 51: 25.4, 52: 15.17142857142857, 53: 23.34285714285714, 54: 28.142857142857142, 55: 15.085714285714285, 56: 16.257142857142856, 57: 23.34285714285714, 58: 23.771428571428572, 59: 22.6, 60: 18.285714285714285, 61: 18.685714285714287, 62: 16.514285714285716, 63: 15.82857142857143, 64: 25.885714285714286, 65: 26.142857142857142, 66: 23.485714285714284, 67: 17.564102564102566, 68: 28.384615384615383, 69: 17.153846153846153, 70: 18.205128205128204, 71: 25.46153846153846, 72: 15.512820512820513, 73: 14.615384615384615, 74: 14.846153846153847, 75: 17.564102564102566, 76: 17.487179487179485, 77: 24.974358974358974, 78: 14.461538461538462, 79: 22.5, 80: 20.0625, 81: 19.84375, 82: 18.9375, 83: 20.25, 84: 31.59375, 85: 33.1875, 86: 18.34375, 
87: 24.71875, 88: 26.03125, 89: 18.09375, 90: 28.34375, 91: 29.1875, 92: 32.46875, 93: 30.09375, 94: 18.5625, 95: 31.9375, 96: 15.28125, 97: 32.3125, 98: 19.9375, 99: 18.625, 100: 19.8125, 101: 18.8125, 102: 18.40625, 103: 15.75, 104: 18.03125, 105: 22.1875, 106: 28.09375, 107: 26.34375, 108: 20.15625, 109: 29.4375, 110: 31.34375, 111: 31.78125, 112: 
29.84375, 113: 32.21875, 114: 32.625, 115: 33.5, 116: 24.46875, 117: 15.870967741935484, 118: 31.483870967741936, 119: 32.354838709677416, 120: 18.29032258064516, 121: 29.741935483870968, 122: 29.677419354838708, 123: 32.41935483870968, 124: 28.129032258064516, 125: 18.032258064516128, 126: 26.06451612903226, 127: 24.70967741935484, 128: 31.838709677419356, 129: 33.61290322580645, 130: 20.35483870967742, 131: 19.129032258064516, 132: 18.580645161290324, 133: 20.419354838709676, 134: 22.483870967741936, 135: 19.451612903225808, 136: 23.59375, 137: 30.78125, 138: 19.28125, 139: 16.03125, 140: 31.78125, 141: 19.625, 142: 19.09375, 143: 32.0625, 144: 20.65625, 145: 20.625, 146: 32.96875, 147: 20.71875, 148: 29.15625, 149: 29.5, 150: 17.875, 151: 29.0625, 152: 21.28125, 153: 18.84375, 154: 28.4375, 155: 24.84375, 156: 26.53125, 157: 29.0625, 158: 18.8125, 159: 20.375, 160: 24.53125, 161: 32.09375, 162: 15.5625, 163: 33.28125, 164: 18.34375, 165: 23.125, 166: 18.625, 167: 29.25, 168: 26.84375, 169: 28.125, 170: 19.3125, 171: 30.53125, 172: 20.875, 173: 28.75, 174: 18.53125, 175: 21.03125, 176: 29.40625, 177: 29.375, 178: 31.8125, 179: 20.34375}}
df = pd.DataFrame(data)
print(df)
           statut          id     niveau
0    titulaire_01  2002134607  13.605263
1    titulaire_01  2002043469  25.131579
2    titulaire_01    67156610  22.473684
3    titulaire_01    73201503  16.236842
4    titulaire_01  2000165962  15.789474
..            ...         ...        ...
175  titulaire_11    67256520  21.031250
176  titulaire_11  2002043003  29.406250
177  titulaire_11  2002043636  29.375000
178  titulaire_11  2002042627  31.812500
179  titulaire_11  2000037444  20.343750
if I do groupby(“statut”) keeping the max of the “niveau” column I have “id” duplicates, an “id” can be in several “titulaire_01” and “titulaire_02” etc.. the result should be 11 rows with no duplicates
Advertisement
Answer
It looks like an optimization problem, you can pivot your data to a rectangular format, then use scipy.optimize.linear_sum_assignment:
from scipy.optimize import linear_sum_assignment
df2 = df.pivot_table(index='id', columns='statut', values='niveau',
                     fill_value=0) # or fill_value=-np.inf
ID, statut = linear_sum_assignment(df2, maximize=True)
out = (pd.DataFrame({'statut': df2.columns[statut], 'id': df2.index[ID]})
         .sort_values(by='statut', ignore_index=True)
      )
output:
statut id 0 titulaire_01 2002042688 1 titulaire_02 2002042628 2 titulaire_03 49037900 3 titulaire_04 2002042669 4 titulaire_05 2002043635 5 titulaire_06 2002042722 6 titulaire_07 2002042666 7 titulaire_08 2002042690 8 titulaire_09 2002042627 9 titulaire_10 2002043171 10 titulaire_11 2002042642