Let’s say that I have this dataframe with multi index :
Montant IBAN Date Balance FR3724687328623865 2020-09-16 654.75 -2.00 2020-09-17 23.65 -88.00 2020-09-21 1537.00 2700.20 2020-09-25 8346.20 -163.21 2020-09-28 6247.60 -468.90 ... ... FR8723498262347632 2020-10-06 13684.11 2708.00 FR9687234782365235 2020-10-16 4353.42 6311.00 2020-10-28 9641.23 562.78 2020-11-30 5436.95 -45.12 2020-09-30 4535.34 -43.56
How do we get access to the data in the columns “Balance” or “Date”, I do not get why that does not work :
bal = df["Montant"]["Balance"]
or
bal = df.loc[("Montant", "Balance")]
Advertisement
Answer
You should use Index.get_level_values
:
In [505]: df Out[505]: Montant IBAN Date Balance FR3724687328623865 2020-09-16 654.75 -2.0 2020-09-17 23.65 -88.00 NaN 2020-09-21 1537.00 2700.20 NaN 2020-09-25 8346.20 -163.21 NaN 2020-09-28 6247.60 -468.90 NaN
You can pass labels
:
In [509]: df.index.get_level_values('Date') Out[509]: Index(['2020-09-16', '23.65', '1537.00', '8346.20', '6247.60'], dtype='object', name='Date') In [510]: df.index.get_level_values('Balance') Out[510]: Float64Index([654.75, -88.0, 2700.2, -163.21, -468.9], dtype='float64', name='Balance')
OR:
Pass indices
:
In [512]: df.index.get_level_values(1) Out[512]: Index(['2020-09-16', '23.65', '1537.00', '8346.20', '6247.60'], dtype='object', name='Date') In [513]: df.index.get_level_values(2) Out[513]: Float64Index([654.75, -88.0, 2700.2, -163.21, -468.9], dtype='float64', name='Balance')