From the documentation and tutorials for pycaret, I expect the classification.compare_models() function to return a grid such as…
| Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | TT (Sec) | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | Naive Bayes | 0.9567 | 0.0000 | 0.9556 | 0.9619 | 0.9561 | 0.9348 | 0.9378 | 0.0076 | 
| 1 | K Neighbors Classifier | 0.9467 | 0.0000 | 0.9444 | 0.9633 | 0.9430 | 0.9197 | 0.9295 | 0.0077 | 
| 2 | Extreme Gradient Boosting | 0.9467 | 0.0000 | 0.9444 | 0.9633 | 0.9430 | 0.9197 | 0.9295 | 0.0521 | 
| etc. | 
My code
from pycaret.classification import *
import pandas as pd
df = pd.read_csv('input.csv')
setup_result = setup(data=df, target='Class')
best = compare_models()
print(best)
I get lot’s of output like this…
Initiated  . . . . . . . . . . . . . . . . . .              11:35:34
Status     . . . . . . . . . . . . . . . . . .  Loading Dependencies
Estimator  . . . . . . . . . . . . . . . . . .     Compiling Library
Empty DataFrame
Columns: [Model, Accuracy, AUC, Recall, Prec., F1, Kappa, MCC, TT (Sec)]
Index: []                                                     
                                                                 
Initiated  . . . . . . . . . . . . . . . . . .           11:35:34
Status     . . . . . . . . . . . . . . . . . .  Loading Estimator
Estimator  . . . . . . . . . . . . . . . . . .  Compiling Library
                                                                 
                                                                 
Initiated  . . . . . . . . . . . . . . . . . .           11:35:34
Status     . . . . . . . . . . . . . . . . . .  Loading Estimator
Estimator  . . . . . . . . . . . . . . . . . .  Compiling Library
And this at the end…
Initiated                         11:35:34  
Status              Compiling Final Models  
Estimator  Light Gradient Boosting Machine  
<pandas.io.formats.style.Styler object at 0x000002562E9A6B20>
LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,
               device='gpu', importance_type='split', learning_rate=0.1,
               max_depth=-1, min_child_samples=20, min_child_weight=0.001,
               min_split_gain=0.0, n_estimators=100, n_jobs=-1, num_leaves=31,
               objective=None, random_state=123, reg_alpha=0.0, reg_lambda=0.0,
               silent='warn', subsample=1.0, subsample_for_bin=200000,
               subsample_freq=0)
But I never get the grid I’m hoping for. I’m running Python 3.8 with Anaconda in Git Bash on Windows.
Advertisement
Answer
On further research I found that IPython support is required for the grid to print – it will not print in console text,
I got the output I was looking for by running the code in a jupyter notebook session.
