I have multiple dataframes with a structure that starts with 10 and then goes from 0 to 10:
JavaScript
x
16
16
1
Type Value
2
10 0.7666
3
10 0.6566
4
10 0.7666
5
0 0.7666
6
0 0.5446
7
1 0.7866
8
2 0.7695
9
2 0.1642
10
3 0.1646
11
..
12
9 0.1476
13
9 0.4224
14
10 0.5446
15
10 0.6566
16
So far I’ve been using this code to group the dataframe by type:
JavaScript
1
3
1
grouped = df.groupby(['Type'])
2
result = grouped.get_group(10)
3
It works fine for types 0-9, but I’d also like to split type 10 into 2 groups to distinguish first and last values instead of having it all in a single dataframe like this:
JavaScript
1
7
1
Type Value
2
10 0.7666
3
10 0.6566
4
10 0.7666
5
10 0.5446
6
10 0.6566
7
Advertisement
Answer
Create groups for consecutive groups and then for selecting use tuple:
JavaScript
1
17
17
1
g = df['Type'].ne(df['Type'].shift()).cumsum()
2
g = g.groupby(df['Type']).rank('dense')
3
4
grouped = df.groupby(['Type', g])
5
result = grouped.get_group((10, 1))
6
print (result)
7
Type Value
8
0 10 0.7666
9
1 10 0.6566
10
2 10 0.7666
11
12
result = grouped.get_group((10, 2))
13
print (result)
14
Type Value
15
11 10 0.5446
16
12 10 0.6566
17