Trying to use pandas to oversample my ragged data (data with different lengths).
Given the following data samples:
import pandas as pd
x = pd.DataFrame({'id':[1,1,1,2,2,3,3,3,3,4,5,6,6],'f1':[11,11,11,22,22,33,33,33,33,44,55,66,66]})
y = pd.DataFrame({'id':[1,2,3,4,5,6],'target':[1,0,1,0,0,0]})
Data (groups are separated with --- for convince):
id f1 0 1 11 1 1 12 2 1 13 ----------- 3 2 22 4 2 22 ----------- 5 3 33 6 3 34 7 3 35 8 3 36 ----------- 9 4 44 ----------- 10 5 55 ----------- 11 6 66 12 6 66
Targets:
id target 0 1 1 1 2 0 2 3 1 3 4 0 4 5 0 5 6 0
I would like to balance the minority class. In the sample above, target 1 is the minority class with 2 samples, for ids 1 & 3.
I’m looking for a way to oversample the data so the results would be:
id f1 0 1 11 1 1 12 2 1 13 ----------- 3 2 22 4 2 22 ----------- 5 3 33 6 3 34 7 3 35 8 3 36 ----------- 9 4 44 ----------- 10 5 55 ----------- 11 6 66 12 6 66 ----------------- 13 7 11 14 7 12 Replica of id 1 15 7 13 ----------------- 16 8 33 17 8 34 Replica of id 3 18 8 35 19 8 36
And the targets would be balanced:
id target 0 1 1 1 2 0 2 3 1 3 4 0 4 5 0 5 6 0 6 7 1 8 8 1
With exactly 4 positive and 4 negative samples.
Advertisement
Answer
You can use:
x = pd.DataFrame({'id':[1,1,1,2,2,3,3,3,3,4,5,6,6],
                  'f1':[11,11,11,22,22,33,33,33,33,44,55,66,66]})
#more general sample
y = pd.DataFrame({'id':[1,2,3,4,5,6,7],'target':[1,0,1,0,0,0,0]})
#repeat values 1 or 0 for balance target
s = y['target'].value_counts()
s1 = s.rsub(s.max())
new = s1.index.repeat(s1).tolist()
#create helper df and add to y
y1 = pd.DataFrame({'id':range(y['id'].max() + 1,y['id'].max() + len(new) + 1), 
                   'target':new})
y2 = y.append(y1, ignore_index=True)
print (y2)
#filter by first value of new
add = y[y['target'].eq(new[0])]
#repeat values by np.tile or is possible change to np.repeat
#add helper column by y1.id and merge to x
add = (add.loc[np.tile(add.index, (len(new) // len(add)) + 1), ['id']]
          .head(len(new))
          .assign(new = y1['id'].tolist())
          .merge(x, on='id', how='left')
          .drop('id', axis=1)
          .rename(columns={'new':'id'}))
#add to x
x2 = x.append(add, ignore_index=True)
print (x2)
Solution above working only for non balanced data, if possible sometimes balanced:
#balanced sample
y = pd.DataFrame({'id':[1,2,3,4,5,6],'target':[1,1,1,0,0,0]})
#repeat values 1 or 0 for balance target
s = y['target'].value_counts()
s1 = s.rsub(s.max())
new = s1.index.repeat(s1).tolist()
if len(new) > 0:
    #create helper df and add to y
    y1 = pd.DataFrame({'id':range(y['id'].max() + 1,y['id'].max() + len(new) + 1),
                       'target':new})
    y2 = y.append(y1, ignore_index=True)
    print (y2)
    
    
    #filter by first value of new
    add = y[y['target'].eq(new[0])]
    
    #repeat values by np.tile or is possible change to np.repeat
    #add helper column by y1.id and merge to x
    add = (add.loc[np.tile(add.index, (len(new) // len(add)) + 1), ['id']]
              .head(len(new))
              .assign(new = y1['id'].tolist())
              .merge(x, on='id', how='left')
              .drop('id', axis=1)
              .rename(columns={'new':'id'}))
    
    #add to x
    x2 = x.append(add, ignore_index=True)
    print (x2)
    
else:
    print ('y is already balanced')