I have below Dataframe how to find dedicated result. I have found multi row maximum with column A.
JavaScript
x
23
23
1
col_0 col_1
2
Caps Lower
3
A a 0 0.246490 2
4
1 -1.265711 5
5
2 -0.477415 6
6
3 -0.355812 1
7
4 -0.724521 2
8
b 0 -0.409198 1
9
1 -0.062552 1
10
2 -0.731789 9
11
3 1.131616 5
12
4 0.085248 3
13
B a 0 0.193948 7
14
1 2.010710 6
15
2 0.289300 4
16
3 0.305373 3
17
4 1.376965 4
18
b 0 0.210522 1
19
1 1.431279 3
20
2 -0.247171 1
21
3 0.899074 8
22
4 0.639926 1
23
result must be :
JavaScript
1
5
1
col_0 col_1
2
Caps
3
A -0.731789 9
4
B 0.899074 8
5
How can I find maximum with col_1
?
Advertisement
Answer
based on your desired example output, your question appears to be: how do I return the rows with the largest col_1
value per Caps
group.
Your example input makes it look like 'Caps'
and 'Lower'
are your indices, but it’s a little easier if they are not indices and just regular columns.
I set up your data like this:
JavaScript
1
9
1
df = pd.DataFrame({'Caps': np.repeat(['A', 'B'], 10),
2
'Lower': list(np.repeat(['a', 'b'], 5)) * 2,
3
'col_0': [0.246490, -1.265711, -0.477415, -0.355812, -0.724521,
4
-0.409198, -0.062552, -0.731789, 1.131616, 0.085248,
5
0.193948, 2.010710, 0.289300, 0.305373, 1.376965,
6
0.210522, 1.431279, -0.247171, 0.899074, 0.639926],
7
'col_1': [2, 5, 6, 1, 2, 1, 1, 9, 5, 3, 7, 6, 4, 3, 4, 1, 3, 1, 8, 1]
8
})
9
[pandas.Series.idxmax][1]
should help, which returns the indices of the rows with the largest col_1
per Caps
group:
JavaScript
1
6
1
df.groupby('Caps')['col_1'].idxmax()
2
# Caps
3
# A 7
4
# B 18
5
# Name: col_1, dtype: int64
6
Plugging that in:
JavaScript
1
5
1
df.loc[df.groupby('Caps')['col_1'].idxmax()]
2
# Caps Lower col_0 col_1
3
# 7 A a -0.731789 9
4
# 18 B b 0.899074 8
5