I was trying to divide the month into two weeks. Basically for each month i am trying to create week numbers like 1,2,3,4 and repeat them.
How to create the required column like below:
import numpy as np
import pandas as pd
df = pd.DataFrame({'Year_Month':['2020-jan']*6+['2020-feb']+['2021-jan']*2+['2021-jan']+['2021-mar']*5})
df['B'] = [1]*6+[5]+[1]*2+[1]+[10]*5
df['groubyA_repeatB'] = [1,2,3,4,1,2,
                         5,
                         1,2,3,
                         10,11,12,13,10] # groupby column A and repeat [i,i+1,i+2,i+3] 
# e.g. for group A: we have 8 'a' and value of a is 1, so we need to repeat [1,2,3,4] until we get 8 elements.
df
   Year_Month   B  groubyA_repeatB  # how to create this column
0    2020-jan   1                1
1    2020-jan   1                2
2    2020-jan   1                3
3    2020-jan   1                4
4    2020-jan   1                1
5    2020-jan   1                2
6    2020-feb   5                5
7    2021-jan   1                1
8    2021-jan   1                2
9    2021-jan   1                3
10   2021-mar  10               10
11   2021-mar  10               11
12   2021-mar  10               12
13   2021-mar  10               13
14   2021-mar  10               10
Advertisement
Answer
You can utilize cycle to create cycle for list and slice to get specific count
from itertools import cycle, islice out = (df .groupby(['Year_Month', 'B']) .apply(lambda g: g.assign(groubyA_repeatB_=list(islice(cycle(range(g.iloc[0]['B'], g.iloc[0]['B']+4)), len(g))))))
print(out) Year_Month B groubyA_repeatB groubyA_repeatB_ 0 2020-jan 1 1 1 1 2020-jan 1 2 2 2 2020-jan 1 3 3 3 2020-jan 1 4 4 4 2020-jan 1 1 1 5 2020-jan 1 2 2 6 2020-feb 5 5 5 7 2021-jan 1 1 1 8 2021-jan 1 2 2 9 2021-jan 1 3 3 10 2021-mar 10 10 10 11 2021-mar 10 11 11 12 2021-mar 10 12 12 13 2021-mar 10 13 13 14 2021-mar 10 10 10