I have this table :
Head Relation Tail 0 9 1 0 1 10 1 11 2 9 0 23 3 10 1 61 4 9 0 12 5 10 0 66 6 10 0 61
I have to create a dictionary with Head key and values equal to the relations but not repeated and for each value of the relations I have to insert the corresponding tail.
example:
{9 : {1: [10], 0:[23,12]}, 10 : {1:[11,61], 0:[66,61]}}
I don’t really know how to do it. Is there someone who can help me?
Second Example Input:
Head Relation Tail 0 207 1 269 1 207 1 61 2 207 0 62 3 208 1 269 4 290 0 269
the output:
{207: {0: [62], 1: [269,61]}, 208: {0: nan, 1: [269]}, 290: {0: [269], 1: nan}}
I would like to remove the nans
Advertisement
Answer
You could use pivot_table
and to_dict
:
(df.pivot_table(index='Head', columns='Relation', values='Tail', aggfunc=list) .to_dict('index') )
Or, the other way around:
(df.pivot_table(index='Relation', columns='Head', values='Tail', aggfunc=list) .to_dict() )
output:
{9: {0: [23, 12], 1: [0]}, 10: {0: [66, 61], 1: [11, 61]}}
post-processing the output to remove NaNs:
d = (df.pivot_table(columns='Head', index='Relation', values='Tail', aggfunc=list) .to_dict() ) d2 = {k: {k2:v2 for k2,v2 in v.items() if pd.isna(v2) is not True} for k,v in d.items()}