My dictionary looks like this:
{'x': {'b': 10, 'c': 20}, 'y': {'b': '33', 'c': 44}}
I want to get a dataframe that looks like this:
index col1 col2 val 0 x b 10 1 x c 20 2 y b 33 3 y c 44
I tried calling pandas.from_dict(), but it did not give me the desired result. So, what is the most elegant, practical way to achieve this?
EDIT: In reality, my dictionary is of depth 4, so I’d like to see a solution for that case, or ideally, one that would work for arbitrary depth in a general setup.
Here is an example of a deeper dictionary:
{'x':{'a':{'m':1, 'n':2}, 'b':{'m':10, 'n':20}}, 'y':{'a':{'m':100, 'n':200}, 'b':{'m':111, 'n':222}} }
The appropriate dataframe should have 8 rows.
ANSWER:
df = pd.DataFrame([(k1, k2, k3, k4, k5, v) for k1, k2345v in dict.items() for k2, k345v in k2345v.items() for k3, k45v in k345v.items() for k4, k5v in k45v.items() for k5, v in k5v.items()])
Advertisement
Answer
You can use a list comprehension to reorder your dict into a list of tuples where each tuple is a row and then you can sort your dataframe
import pandas as pd d = {'x': {'b': 10, 'c': 20}, 'y': {'b': '33', 'c': 44}} df = pd.DataFrame([(k,k1,v1) for k,v in d.items() for k1,v1 in v.items()], columns = ['Col1','Col2','Val']) print df.sort(['Col1','Col2','Val'], ascending=[1,1,1]) Col1 Col2 Val 3 x b 10 2 x c 20 1 y b 33 0 y c 44