Hi can some one explain why it adds two 0 0 to my data frame in this function
def ToDF(ticker):
marketPriceP = []
marketPriceT = []
marketPriceT.append(t())
marketPriceP.append(currentPrice(ticker))
while True:
marketPriceT.append(t())
marketPriceP.append(currentPrice(ticker))
if len(marketPriceP) > 5:
MKpriceDF = pd.DataFrame(['Price'])
MKpriceDF1 = pd.DataFrame(['Time'])
MKpriceDF = MKpriceDF.append(marketPriceP, ignore_index= True, verify_integrity= False, sort= None)
MKpriceDF1 = MKpriceDF1.append(marketPriceT, ignore_index= True, verify_integrity= False, sort= None)
MKpriceDF = pd.concat([MKpriceDF1, MKpriceDF], axis= 1)
return MKpriceDF
break
the output looks like
0 0 0 Time Price 1 22:24:52 41.04 2 22:24:52 41.04 3 22:24:52 41.04 4 22:24:52 41.04 5 22:24:52 41.04 6 22:24:52 41.04
Advertisement
Answer
You may want to revisit how you are creating the dataframe. Here are some changes for you to consider. I have limited information about what you are doing so my answer is catering to just the code I have seen.
def ToDF(ticker):
marketPriceP = []
marketPriceT = []
marketPriceT.append(t())
marketPriceP.append(currentPrice(ticker))
while True:
marketPriceT.append(t())
marketPriceP.append(currentPrice(ticker))
if len(marketPriceP) > 5:
MKpriceDF = pd.DataFrame({'Price':marketPriceP, 'Time':marketPriceT})
return MKpriceDF
# MKpriceDF = pd.DataFrame(['Price'])
# MKpriceDF1 = pd.DataFrame(['Time'])
# MKpriceDF = MKpriceDF.append(marketPriceP, ignore_index= True, verify_integrity= False, sort= None)
# MKpriceDF1 = MKpriceDF1.append(marketPriceT, ignore_index= True, verify_integrity= False, sort= None)
# MKpriceDF = pd.concat([MKpriceDF1, MKpriceDF], axis= 1)
# return MKpriceDF
# break