I have a pandas dataframe like so:
JavaScript
x
4
1
col1 col2 col3 col4 col5 col6
2
val1 val2 val3 val4 val5 val6
3
4
I have have an array having level1 column names and an OrderedDict having level0 column names and how many columns fall under them:
JavaScript
1
3
1
col_names = ['id', 'a', 'b', 'a', 'b', 'c']
2
col_layout_dict = OrderedDict([('ID', 1), ('A', 2), ('B', 2), ('C', 1)])
3
col_names
and col_layout_dict
are being used in other part of the code too, so I don’t want to change them and also, since they are already available I would like to repurpose them to update the column names of my dataframe like so:
JavaScript
1
5
1
ID A B C
2
id a b a b c
3
val1 val2 val3 val4 val5 val6
4
5
How can I do this?
Advertisement
Answer
Use list comprehension with range
for flatten values of dict:
JavaScript
1
19
19
1
col_names = ['id', 'a', 'b', 'a', 'b', 'c']
2
col_layout_dict = OrderedDict([('ID', 1), ('A', 2), ('B', 2), ('C', 1)])
3
4
c = [k for k, v in col_layout_dict.items() for x in range(v)]
5
6
col_names = ['id', 'a', 'b', 'a', 'b', 'c']
7
8
mux = pd.MultiIndex.from_arrays([c, col_names])
9
print (mux)
10
MultiIndex([('ID', 'id'),
11
( 'A', 'a'),
12
( 'A', 'b'),
13
( 'B', 'a'),
14
( 'B', 'b'),
15
( 'C', 'c')],
16
)
17
18
df.columns = mux
19