import pd as pandas
import random
import numpy as np
data = {'Item_No':['001', '002', '003','004', '005', '006','007','008','009'],
'Group_code':[331, 332, 333, 333, 333, 331, 331, nan, nan]}
df = pd.DataFrame(data)
I would like to apply a unique random number to ‘nan’ and keep the group code where group code exists. I’ve tried the following, but i cant seem to get the syntax right, what am i doing wrong.
df['Group_Code'] = df['Group_Code'].apply(lambda v: (random.random() * 1000) if pd.isnull(v['Group_Code'] else v['Group_Code'], axis = 1))
Advertisement
Answer
Step 0:-
Your Dataframe:-
data = {'Item_No':['001', '002', '003','004', '005', '006','007','008','009'],
'Group_code':[331, 332, 333, 333, 333, 331, 331, np.nan, np.nan]}
df = pd.DataFrame(data)
Step 1:-
Firstly define a function:-
def func(val):
if pd.isnull(val):
return random.random() * 1000
else:
return val
Step 2:-
Then just use apply() method:-
df['Group_code']=df['Group_code'].apply(func).astype(int)
Now if you print df you will get your expected output