Skip to content
Advertisement

Numpy apply along axis based on row index

Trying to apply numpy inbuilt function apply_along_axis based on row index position

import numpy as np
sa = np.array(np.arange(4))
sa_changed = (np.repeat(sa.reshape(1,len(sa)),repeats=2,axis=0))
print (sa_changed)

OP:

[[0 1 2 3]
 [0 1 2 3]]

The function:

np.apply_along_axis(lambda x: x+10,0,sa_changed)

Op:

array([[10, 11, 12, 13],
       [10, 11, 12, 13]])

But is there a way to use this function based on row index position for example, if its a even row index then add 10 and if its a odd row index then add 50

Sample:

def func(x):
   if x.index//2==0:
      x = x+10
   else:
      x = x+50
   return x

Advertisement

Answer

When iterating on array, directly or with apply_along_axis, the subarray does not have a .index attribute. So we have to pass an explicit index value to your function:

In [248]: def func(i,x):
     ...:    if i//2==0:
     ...:       x = x+10
     ...:    else:
     ...:       x = x+50
     ...:    return x
     ...: 
In [249]: arr = np.arange(10).reshape(5,2)

apply doesn’t have a way to add this index, so instead we have to use an explicit iteration.

In [250]: np.array([func(i,v) for i,v in enumerate(arr)])
Out[250]: 
array([[10, 11],
       [12, 13],
       [54, 55],
       [56, 57],
       [58, 59]])

replacing // with %

In [251]: def func(i,x):
     ...:    if i%2==0:
     ...:       x = x+10
     ...:    else:
     ...:       x = x+50
     ...:    return x
     ...: 
In [252]: np.array([func(i,v) for i,v in enumerate(arr)])
Out[252]: 
array([[10, 11],
       [52, 53],
       [14, 15],
       [56, 57],
       [18, 19]])

But a better way is to skip the iteration entirely:

Make an array of the row additions:

In [253]: np.where(np.arange(5)%2,10,50)
Out[253]: array([50, 10, 50, 10, 50])

apply it via broadcasting:

In [256]: x+np.where(np.arange(5)%2,50,10)[:,None]
Out[256]: 
array([[10, 11],
       [52, 53],
       [14, 15],
       [56, 57],
       [18, 19]])
User contributions licensed under: CC BY-SA
6 People found this is helpful
Advertisement