I want to know if there is a better way of transforming a date column into a datetime column + 1 hour than the method I am currently using.
Here is my dataframe:
df = sc.parallelize([
['2019-08-29'],
['2019-08-30'],
['2019-09-1'],
['2019-09-2'],
['2019-09-4'],
['2019-09-10']
]).toDF(['DATE']).withColumn('DATE',col('DATE').cast('date'))
My code:
df1 = df.withColumn(
'DATETIME',
((col('DATE').cast('timestamp').cast('long')+3600)).cast('timestamp')
)
Which gives the output:
+----------+-------------------+ | DATE| DATETIME| +----------+-------------------+ |2019-08-29|2019-08-29 01:00:00| |2019-08-30|2019-08-30 01:00:00| |2019-09-01|2019-09-01 01:00:00| |2019-09-02|2019-09-02 01:00:00| |2019-09-04|2019-09-04 01:00:00| |2019-09-10|2019-09-10 01:00:00| +----------+-------------------+
Does anyone know a more efficient way of doing this. Casting to a timestamp twice seems a bit clumsy.
Many thanks.
Advertisement
Answer
you can use something like this:
from pyspark.sql.functions import expr
df1 = df.withColumn('DATETIME',
col('DATE').cast('timestamp')+ expr('INTERVAL 1 HOURS'))
then you can read more about syntax for intervals, for example, in following blog post from Databricks.