I have a soil property data with depth in different x points. The borehole data are not in equal depth or number, so I have to standardize the code. If all boreholes have same number of data and depth, no problem, np.meshgrid will work fine. However, in my case, I had a trouble and couldn’t manage to draw a contourf plot.
Is it not possible or do I do something wrong?
input_data = { "BH1": { "Chainage": 50, "Depth": [2, 3, 4, 5, 6,7,10], "Parameter": [10, 5, 12, 56, 34,45,62], }, "BH2": {"Chainage": 0, "Depth": [2, 3, 4, 5, 6, 18], "Parameter": [2, 4, 12, 23, 12, 33]}, "BH3": { "Chainage": -50, "Depth": [2, 3, 4, 5, 6, 9], "Parameter": [12, 14, 22, 33, 32, 70], }, } import numpy as np import matplotlib.pyplot as plt #PREPROCESSING OF DATA depth_lengths = [] for i in input_data.keys(): depth_lengths.append(len(input_data[i]["Depth"])) max_depth_length = max(depth_lengths) for i in input_data.keys(): while len(input_data[i]["Depth"]) < max_depth_length: input_data[i]["Depth"].append(None) input_data[i]["Parameter"].append(None) parameter = [] for i in range(max_depth_length): temp = [] for j in input_data.keys(): temp.append(input_data[j]["Parameter"][i]) parameter.append(temp) depth = [] chainage = [] parameter2 = [] for i in input_data.keys(): for j in input_data[i]["Depth"]: depth.append(j) for j in input_data[i]["Parameter"]: parameter2.append(j) chainage.append(input_data[i]["Chainage"]) # X, Y = np.meshgrid(chainage, depth) parameter2 = np.array(parameter2*3).reshape(-1,3) fig,ax=plt.subplots() ax.contourf(X, Y, parameter2, 8, alpha=.75, cmap='jet')
Advertisement
Answer
For data that isn’t organized on a regular grid, tricontourf
creates a contour plot by connecting the input point via triangles. You can use np.repeat
to create a list (or 1D array) of chainage
s with the same length as the depth
s. Just looping through the depth
s and the parameter
s to create the corresponding lists.
import matplotlib.pyplot as plt import numpy as np input_data = {"BH1": {"Chainage": 50, "Depth": [2, 3, 4, 5, 6, 7, 10], "Parameter": [10, 5, 12, 56, 34, 45, 62]}, "BH2": {"Chainage": 0, "Depth": [2, 3, 4, 5, 6, 18], "Parameter": [2, 4, 12, 23, 12, 33]}, "BH3": {"Chainage": -50, "Depth": [2, 3, 4, 5, 6, 9], "Parameter": [12, 14, 22, 33, 32, 70]}} chainage = np.repeat([v["Chainage"] for v in input_data.values()], [len(v["Depth"]) for v in input_data.values()]) depth = [d for v in input_data.values() for d in v["Depth"]] parameter = [p for v in input_data.values() for p in v["Parameter"]] fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 5)) ax1.tricontourf(chainage, depth, parameter, levels=8, alpha=.75, cmap='jet') ax2.scatter(chainage, depth, c=parameter, cmap='jet') plt.show()
The plot on the right shows the input, colored as a scatter plot. The left plot shows the corresponding contour plot.