I am experimenting with polars
and would like to understand why using polars
is slower than using pandas
on a particular example:
import pandas as pd import polars as pl n=10_000_000 df1 = pd.DataFrame(range(n), columns=['a']) df2 = pd.DataFrame(range(n), columns=['b']) df1p = pl.from_pandas(df1.reset_index()) df2p = pl.from_pandas(df2.reset_index()) # takes ~60 ms df1.join(df2) # takes ~950 ms df1p.join(df2p, on='index')
Advertisement
Answer
A pandas join
uses the indexes, which are cached.
A comparison where they do the same:
# pandas # CPU times: user 1.64 s, sys: 867 ms, total: 2.5 s # Wall time: 2.52 s df1.merge(df2, left_on="a", right_on="b") # polars # CPU times: user 5.59 s, sys: 199 ms, total: 5.79 s # Wall time: 780 ms df1p.join(df2p, left_on="a", right_on="b")