I’m taking the Udacity course on deep learning and I came across the following code:
def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels
What does labels[:,None]
actually do here?
Advertisement
Answer
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
numpy.newaxis
The newaxis object can be used in all slicing operations to create an axis of length one. :const: newaxis is an alias for ‘None’, and ‘None’ can be used in place of this with the same result.
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.expand_dims.html
Demonstrating with part of your code
In [154]: labels=np.array([1,3,5]) In [155]: labels[:,None] Out[155]: array([[1], [3], [5]]) In [157]: np.arange(8)==labels[:,None] Out[157]: array([[False, True, False, False, False, False, False, False], [False, False, False, True, False, False, False, False], [False, False, False, False, False, True, False, False]], dtype=bool) In [158]: (np.arange(8)==labels[:,None]).astype(int) Out[158]: array([[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0]])