I’m totally new to Pyspark, as Pyspark doesn’t have loc feature how can we write this logic. I tried by specifying conditions but couldn’t get the desirable result, any help would be greatly appreciated!
df['Total'] = (df['level1']+df['level2']+df['level3']+df['level4'])/df['Number'] df.loc[df['level4'] > 0, 'Total'] += 4 df.loc[((df['level3'] > 0) & (df['Total'] < 1)), 'Total'] += 3 df.loc[((df['level2'] > 0) & (df['Total'] < 1)), 'Total'] += 2 df.loc[((df['level1'] > 0) & (df['Total'] < 1)), 'Total'] += 1
Advertisement
Answer
For a data like the following
data_ls = [
(1, 1, 1, 1, 10),
(5, 5, 5, 5, 10)
]
data_sdf = spark.sparkContext.parallelize(data_ls).
toDF(['level1', 'level2', 'level3', 'level4', 'number'])
# +------+------+------+------+------+
# |level1|level2|level3|level4|number|
# +------+------+------+------+------+
# | 1| 1| 1| 1| 10|
# | 5| 5| 5| 5| 10|
# +------+------+------+------+------+
You’re actually updating total column in each statement, not in an if-then-else way. Your code can be replicated (as is) in pyspark using multiple withColumn() with when() like the following.
data_sdf.
withColumn('total', (func.col('level1') + func.col('level2') + func.col('level3') + func.col('level4')) / func.col('number')).
withColumn('total', func.when(func.col('level4') > 0, func.col('total') + 4).otherwise(func.col('total'))).
withColumn('total', func.when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') + 3).otherwise(func.col('total'))).
withColumn('total', func.when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') + 2).otherwise(func.col('total'))).
withColumn('total', func.when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') + 1).otherwise(func.col('total'))).
show()
# +------+------+------+------+------+-----+
# |level1|level2|level3|level4|number|total|
# +------+------+------+------+------+-----+
# | 1| 1| 1| 1| 10| 4.4|
# | 5| 5| 5| 5| 10| 6.0|
# +------+------+------+------+------+-----+
We can merge all the withColumn() with when() into a single withColumn() with multiple when() statements.
data_sdf.
withColumn('total', (func.col('level1') + func.col('level2') + func.col('level3') + func.col('level4')) / func.col('number')).
withColumn('total',
func.when(func.col('level4') > 0, func.col('total') + 4).
when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') + 3).
when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') + 2).
when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') + 1).
otherwise(func.col('total'))
).
show()
# +------+------+------+------+------+-----+
# |level1|level2|level3|level4|number|total|
# +------+------+------+------+------+-----+
# | 1| 1| 1| 1| 10| 4.4|
# | 5| 5| 5| 5| 10| 6.0|
# +------+------+------+------+------+-----+
It’s like numpy.where and SQL’s case statements.