Skip to content
Advertisement

How to tie weights between transposed layers?

I have try to tied weights in tensorflow 2.0 keras, with below code. but it shows this errors? does anyone know how to write tied weights dense layer ?

tf.random.set_seed(0)
with tf.device('/cpu:0'):
    # This returns a tensor
    inputs = Input(shape=(784,))

# a layer instance is callable on a tensor, and returns a tensor
    layer_1 = Dense(64, activation='relu')
    layer_1_output = layer_1(inputs)
    layer_2 = Dense(64, activation='relu')
    layer_2_output = layer_2(layer_1_output)
    weights = tf.transpose(layer_1.weights[0]).numpy()
    print(weights.shape)
    transpose_layer = Dense(
        784, activation='relu')
    transpose_layer_output = transpose_layer(layer_2_output)
    transpose_layer.set_weights(weights)
    predictions = Dense(10, activation='softmax')(transpose_layer)

    # This creates a model that includes
    # the Input layer and three Dense layers
    model = Model(inputs=inputs, outputs=predictions)
    model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    # print(model.weights)
model.summary()

Errors

Traceback (most recent call last):
File "practice_2.py", line 62, in <module>
transpose_layer.set_weights(weights)
File "/Users/cheesiang_leow/.virtualenvs/tensorflow-2.0/lib/python3.6/site- 
packages/tensorflow/python/keras/engine/base_layer.py", line 934, in set_weights
str(weights)[:50] + '...')
ValueError: You called `set_weights(weights)` on layer "dense_2" with a  weight 
list of length 64, but the layer was expecting 2 weights. Provided weights: 
[[-0.03499636  0.0214913   0.04076344 ... -0.06531...

Advertisement

Answer

It took much of my time to figure out, but I think this is the way of Tied Weights by subclassing Keras Dense layer.

class TiedLayer(Dense):
    def __init__(self, layer_sizes, l2_normalize=False, dropout=0.0, *args, **kwargs):
        self.layer_sizes = layer_sizes
        self.l2_normalize = l2_normalize
        self.dropout = dropout
        self.kernels = []
        self.biases = []
        self.biases2 = []
        self.uses_learning_phase = True
        self.activation = kwargs['activation']
        if self.activation == "leaky_relu":
            self.activation = kwargs.pop('activation')
            self.activation = LeakyReLU()
            print(self.activation)
        super().__init__(units=1, *args, **kwargs)  # 'units' not used

    def compute_output_shape(self, input_shape):
        return input_shape

    def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = int(input_shape[-1])

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        # print(input_dim)
        for i in range(len(self.layer_sizes)):

            self.kernels.append(
                self.add_weight(
                    shape=(
                        input_dim,
                        self.layer_sizes[i]),
                    initializer=self.kernel_initializer,
                    name='ae_kernel_{}'.format(i),
                    regularizer=self.kernel_regularizer,
                    constraint=self.kernel_constraint))

            if self.use_bias:
                self.biases.append(
                    self.add_weight(
                        shape=(
                            self.layer_sizes[i],
                        ),
                        initializer=self.bias_initializer,
                        name='ae_bias_{}'.format(i),
                        regularizer=self.bias_regularizer,
                        constraint=self.bias_constraint))
            input_dim = self.layer_sizes[i]

        if self.use_bias:
            for n, i in enumerate(range(len(self.layer_sizes)-2, -1, -1)):
                self.biases2.append(
                    self.add_weight(
                        shape=(
                            self.layer_sizes[i],
                        ),
                        initializer=self.bias_initializer,
                        name='ae_bias2_{}'.format(n),
                        regularizer=self.bias_regularizer,
                        constraint=self.bias_constraint))
            self.biases2.append(self.add_weight(
                shape=(
                    int(input_shape[-1]),
                ),
                initializer=self.bias_initializer,
                name='ae_bias2_{}'.format(len(self.layer_sizes)),
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint))

        self.built = True

    def call(self, inputs):
        return self.decode(self.encode(inputs))

    def _apply_dropout(self, inputs):
        dropped = K.backend.dropout(inputs, self.dropout)
        return K.backend.in_train_phase(dropped, inputs)

    def encode(self, inputs):
        latent = inputs
        for i in range(len(self.layer_sizes)):
            if self.dropout > 0:
                latent = self._apply_dropout(latent)
            print(self.kernels[i])
            latent = K.backend.dot(latent, self.kernels[i])
            if self.use_bias:
                print(self.biases[i])
                latent = K.backend.bias_add(latent, self.biases[i])
            if self.activation is not None:
                latent = self.activation(latent)
        if self.l2_normalize:
            latent = latent / K.backend.l2_normalize(latent, axis=-1)
        return latent

    def decode(self, latent):
        recon = latent
        for i in range(len(self.layer_sizes)):
            if self.dropout > 0:
                recon = self._apply_dropout(recon)
            print(self.kernels[len(self.layer_sizes) - i - 1])
            recon = K.backend.dot(recon, K.backend.transpose(
                self.kernels[len(self.layer_sizes) - i - 1]))
            if self.use_bias:
                print(self.biases2[i])
                recon = K.backend.bias_add(recon, self.biases2[i])
            if self.activation is not None:
                recon = self.activation(recon)
        return recon

    def get_config(self):
        config = {
            'layer_sizes': self.layer_sizes
        }
        base_config = super().get_config()
        base_config.pop('units', None)
        return dict(list(base_config.items()) + list(config.items()))

    @classmethod
    def from_config(cls, config):
        return cls(**config)

Hope it can help someone else.

User contributions licensed under: CC BY-SA
10 People found this is helpful
Advertisement