Skip to content
Advertisement

How to standardize column in pandas

I have dataframe which contains id column with the following sample values

16620625 5686

16310427-5502

16501010 4957

16110430 8679

16990624/4174
  
16230404.1177

16820221/3388

I want to standardise to XXXXXXXX-XXXX (i.e. 8 and 4 digits separated by a dash), How can I achieve that using python.

here’s my code

df['id']
df.replace(" ", "-")

Advertisement

Answer

Can use DataFrame.replace() function using a regular expression like this:

df = df.replace(regex=r'^(d{8})D(d{4})$', value=r'1-2')

Here’s example code with sample data.

import pandas as pd
df = pd.DataFrame({'id': [
            '16620625 5686',
            '16310427-5502',
            '16501010 4957',
            '16110430 8679',
            '16990624/4174',
            '16230404.1177',
            '16820221/3388']})

# normalize matching strings with 8-digits + delimiter + 4-digits
df = df.replace(regex=r'^(d{8})D(d{4})$', value=r'1-2')
print(df)

Output:

              id
0  16620625-5686
1  16310427-5502
2  16501010-4957
3  16110430-8679
4  16990624-4174
5  16230404-1177
6  16820221-3388

If any value does not match the regexp of the expected format then it’s value will not be changed.

User contributions licensed under: CC BY-SA
8 People found this is helpful
Advertisement