I have managed to implement early stopping into my Keras model, but I am not sure how I can view the loss of the best epoch.
JavaScript
x
16
16
1
es = EarlyStopping(monitor='val_out_soft_loss',
2
mode='min',
3
restore_best_weights=True,
4
verbose=2,
5
patience=10)
6
7
model.fit(tr_x,
8
tr_y,
9
batch_size=batch_size,
10
epochs=epochs,
11
verbose=1,
12
callbacks=[es],
13
validation_data=(val_x, val_y))
14
loss = model.history.history["val_out_soft_loss"][-1]
15
return model, loss
16
The way I have defined the loss score, means that the returned score comes from the final epoch, not the best epoch.
Example:
JavaScript
1
26
26
1
from sklearn.model_selection import train_test_split, KFold
2
losses = []
3
models = []
4
for k in range(2):
5
kfold = KFold(5, random_state = 42 + k, shuffle = True)
6
for k_fold, (tr_inds, val_inds) in enumerate(kfold.split(train_y)):
7
print("-----------")
8
print("-----------")
9
model, loss = get_model(64, 100)
10
models.append(model)
11
print(k_fold, loss)
12
losses.append(loss)
13
print("-------")
14
print(losses)
15
print(np.mean(losses))
16
17
Epoch 23/100
18
18536/18536 [==============================] - 7s 362us/step - loss: 0.0116 - out_soft_loss: 0.0112 - out_reg_loss: 0.0393 - val_loss: 0.0131 - val_out_soft_loss: 0.0127 - val_out_reg_loss: 0.0381
19
20
Epoch 24/100
21
18536/18536 [==============================] - 7s 356us/step - loss: 0.0116 - out_soft_loss: 0.0112 - out_reg_loss: 0.0388 - val_loss: 0.0132 - val_out_soft_loss: 0.0127 - val_out_reg_loss: 0.0403
22
23
Restoring model weights from the end of the best epoch
24
Epoch 00024: early stopping
25
0 0.012735568918287754
26
So in this example, I would like to see the loss at Epoch 00014 (which is 0.0124).
I also have a separate question: How can I set the decimal places for the val_out_soft_loss score?
Advertisement
Answer
Assign the fit()
call in Keras to a variable so you can track the metrics through the epochs.
JavaScript
1
2
1
history = model.fit(tr_x,
2
It will return a dictionary, access it like this:
JavaScript
1
2
1
loss_hist = history.history['loss']
2
And then get the min()
to get the minimum loss, and argmin()
to get the best epoch (zero-based).
JavaScript
1
3
1
np.min(loss_hist)
2
np.argmin(loss_hist)
3