I would like to use the inverse_transform function for LabelEncoder on multiple columns.
This is the code I use for more than one columns when applying LabelEncoder on a dataframe:
class MultiColumnLabelEncoder:
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode
    def fit(self,X,y=None):
        return self # not relevant here
    def transform(self,X):
        '''
        Transforms columns of X specified in self.columns using
        LabelEncoder(). If no columns specified, transforms all
        columns in X.
        '''
        output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output
    def fit_transform(self,X,y=None):
        return self.fit(X,y).transform(X)
Is there a way to modify the code and change it so that it be used to inverse the labels from the encoder?
Thanks
Advertisement
Answer
In order to inverse transform the data you need to remember the encoders that were used to transform every column. A possible way to do this is to save the LabelEncoders in a dict inside your object. The way it would work:
- when you call fitthe encoders for every column are fit and saved
- when you call transformthey get used to transform data
- when you call inverse_transformthey get used to do the inverse transformation
Example code:
class MultiColumnLabelEncoder:
    def __init__(self, columns=None):
        self.columns = columns # array of column names to encode
    def fit(self, X, y=None):
        self.encoders = {}
        columns = X.columns if self.columns is None else self.columns
        for col in columns:
            self.encoders[col] = LabelEncoder().fit(X[col])
        return self
    def transform(self, X):
        output = X.copy()
        columns = X.columns if self.columns is None else self.columns
        for col in columns:
            output[col] = self.encoders[col].transform(X[col])
        return output
    def fit_transform(self, X, y=None):
        return self.fit(X,y).transform(X)
    def inverse_transform(self, X):
        output = X.copy()
        columns = X.columns if self.columns is None else self.columns
        for col in columns:
            output[col] = self.encoders[col].inverse_transform(X[col])
        return output
You can then use it like this:
multi = MultiColumnLabelEncoder(columns=['city','size'])
df = pd.DataFrame({'city':    ['London','Paris','Moscow'],
                   'size':    ['M',     'M',    'L'],
                   'quantity':[12,       1,      4]})
X = multi.fit_transform(df)
print(X)
#    city  size  quantity
# 0     0     1        12
# 1     2     1         1
# 2     1     0         4
inv = multi.inverse_transform(X)
print(inv)
#      city size  quantity
# 0  London    M        12
# 1   Paris    M         1
# 2  Moscow    L         4
There could be a separate implementation of fit_transform that would call the same method of LabelEncoders. Just make sure to keep the encoders around for when you need the inverse transformation.