I have dataframe as per below Country: China, China, China, United Kingdom, United Kingdom,United Kingdom Country code: CN, CN, CN, UK, UK, UK Port Name: Yantian, Shekou, Quanzhou, Plymouth, Cardiff, Bird port
I want to remove the duplicates in the first two columns, only keep as: Country: China, , , United Kingdom, , Country code: CN, , , UK, , Port Name: Yantian, Shekou, Quanzhou, Plymouth, Cardiff, Bird port
I have tried df.drop_duplicates, but it will drop the whole rows.
Advertisement
Answer
You could use the pd.Series.duplicated method:
import pandas as pd
df = pd.DataFrame(
[
['China', 'CN', 'Yantian'],
['China', 'CN', 'Shekou'],
['China', 'CN', 'Quanzhou'],
['United Kingdom', 'UK', 'Plymouth'],
['United Kingdom', 'UK', 'Cardiff'],
['United Kingdom', 'UK', 'Bird port']
],
columns=['Country', 'Country code', 'Port Name']
)
for col in ['Country', 'Country code']:
df[col][df[col].duplicated()] = np.NaN
print(df)
prints
| index | Country | Country code | Port Name |
|---|---|---|---|
| 0 | China | CN | Yantian |
| 1 | NaN | NaN | Shekou |
| 2 | NaN | NaN | Quanzhou |
| 3 | United Kingdom | UK | Plymouth |
| 4 | NaN | NaN | Cardiff |
| 5 | NaN | NaN | Bird port |