But function f is a problem because I don’t know how to combine the mesh with the matrix, is there a smart way to solve this problem?
Advertisement
Answer
It looks like your code for g
is very close to the one for f
. You could just define your M matrix and include it in the matrix multiplication. See code below for more details:
JavaScript
x
30
30
1
import numpy as np
2
import matplotlib.pyplot as plt
3
4
def f_function(diagonal_values):
5
fig = plt.figure(figsize=(15,8))
6
data = np.linspace(-4, 4, 20)
7
8
x_1, x_2 = np.meshgrid(data, data, indexing="ij")
9
10
fx = np.zeros_like(x_1)
11
#Defining M
12
M=np.diag(diagonal_values)
13
print(M)
14
for i in range(data.shape[0]):
15
for j in range(data.shape[0]):
16
x = np.array([x_1[i,j], x_2[i,j]])
17
f = x.T @ M @ x
18
fx[i,j] = f
19
20
ax = fig.add_subplot(121, projection="3d")
21
surf = ax.plot_surface(x_1, x_2, fx)
22
ax.set_xlabel("x_1")
23
ax.set_ylabel("x_2")
24
ax.set_zlabel("f")
25
26
#Randomly picking diagonal values
27
diag_values=np.random.uniform(0,10,2)
28
print('Diagonal values: '+str(diag_values))
29
f_function(np.array(diag_values))
30
The output gives:
Diagonal values: [8.62030848 2.68367524]
And the plot: