Skip to content
Advertisement

How to make a python program that calculates a result for each row of the input table?

I am trying to make a Python program that will calculate a result based on a formula, given factors and an input dataframe.

I have a number of cars (N_cars) on a given length of the road (l) and their average speed (v):

input_columns = ['l', 'N_cars', 'v']
input_data = [[3.5, 1000, 100], [5.7, 500, 110], 
              [10, 367, 110], [11.1, 1800, 95],
              [2.8, 960, 105], [4.7, 800, 120], 
              [10.4, 103, 111], [20.1, 1950, 115]]
        
input_df = pd.DataFrame(input_data, columns=input_columns)
input_df

      l  N_cars    v
0   3.5    1000  100
1   5.7     500  110
2  10.0     367  110
3  11.1    1800   95
4   2.8     960  105
5   4.7     800  120
6  10.4     103  111
7  20.1    1950  115

I also know the factors needed for the formula for each category of car, and I know the percentage of each category. I also have different options for each category (3 options that I have here are just an example, there are many more options).

factors_columns = ['category', 'category %', 'option', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
factors_data = [['A', 58, 'opt_1', 0.000011, 0.23521, 0.93847, 0.39458, 0.00817, 0.24566, 0.0010, 0],
                ['A', 58, 'opt_2', 0.000011, 0.23521, 0.93145, 0.39458, 0.00467, 0.24566, 0.0010, 0],
                ['A', 58, 'opt_3', 0.000011, 0.23521, 0.93145, 0.39458, 0.00467, 0.24566, 0.0010, 0],
                ['B', 22, 'opt_1', 0.002452, 0.48327, 0.83773, 0.92852, 0.00871, 0.29568, 0.0009, 0.02],
                ['B', 22, 'opt_2', 0.002899, 0.49327, 0.83773, 0.92852, 0.00871, 0.30468, 0.0009, 0.02],
                ['B', 22, 'opt_3', 0.002452, 0.48327, 0.83773, 0.92852, 0.00771, 0.29568, 0.0119, 0.01],
                ['C', 17, 'opt_1', 0.082583, 0.39493, 0.02462, 0.82714, 0.00918, 0.28572, 0.0012, 0],
                ['C', 17, 'opt_2', 0.072587, 0.35493, 0.02852, 0.82723, 0.00912, 0.29572, 0.0018, 0], 
                ['C', 17, 'opt_3', 0.082583, 0.39493, 0.02852, 0.82714, 0.00962, 0.28572, 0.0012, 0.01], 
                ['D', 3, 'opt_1', 0.018327, 0.32342, 0.82529, 0.92752, 0.00988, 0.21958, 0.0016, 0],
                ['D', 3, 'opt_2', 0.014427, 0.32342, 0.82729, 0.92752, 0.00968, 0.22558, 0.0026, 0],
                ['D', 3, 'opt_3', 0.018327, 0.32342, 0.82729, 0.94452, 0.00988, 0.21258, 0.0016, 0]]
        
factors_df = pd.DataFrame(factors_data, columns=factors_columns)
factors_df

   category  category % option         a        b        c        d        e        f       g     h
0         A          58  opt_1  0.000011  0.23521  0.93847  0.39458  0.00817  0.24566  0.0010  0.00
1         A          58  opt_2  0.000011  0.23521  0.93145  0.39458  0.00467  0.24566  0.0010  0.00
2         A          58  opt_3  0.000011  0.23521  0.93145  0.39458  0.00467  0.24566  0.0010  0.00
3         B          22  opt_1  0.002452  0.48327  0.83773  0.92852  0.00871  0.29568  0.0009  0.02
4         B          22  opt_2  0.002899  0.49327  0.83773  0.92852  0.00871  0.30468  0.0009  0.02
5         B          22  opt_3  0.002452  0.48327  0.83773  0.92852  0.00771  0.29568  0.0119  0.01
6         C          17  opt_1  0.082583  0.39493  0.02462  0.82714  0.00918  0.28572  0.0012  0.00
7         C          17  opt_2  0.072587  0.35493  0.02852  0.82723  0.00912  0.29572  0.0018  0.00
8         C          17  opt_3  0.082583  0.39493  0.02852  0.82714  0.00962  0.28572  0.0012  0.01
9         D           3  opt_1  0.018327  0.32342  0.82529  0.92752  0.00988  0.21958  0.0016  0.00
10        D           3  opt_2  0.014427  0.32342  0.82729  0.92752  0.00968  0.22558  0.0026  0.00
11        D           3  opt_3  0.018327  0.32342  0.82729  0.94452  0.00988  0.21258  0.0016  0.00

For each option (opt_1, opt_2, opt_3), I have to calculate the result based on this formula (factors are taken from the factors table, but v is coming from the input table):

formula = ( (a*v*v) + (b*v) + c + (d/v) )  /  ( (e*v*v) + (f*v) + g) * (1 - h)
result = l * N_cars * formula

However, I have to take into account the percentage of each category of car. For each row of the input_df I have to perform the calculations three times, once for each of the three options. For example, for the index 0 of input_df, I have N_cars=1000, v=100 and l=3.5, the output should be something like this:

# for opt_1:
result = 3.5 * 1000 * ((58% of category A {formula for index 0 of factors_df}) +
                       (22% of category B {formula for index 3 of factors_df) +
                       (17% of category C {formula for index 6 of factors_df}) +
                       (3% of category D {formula for index 9 of factors_df}) )

# for opt_2:
result = 3.5 * 1000 * ((58% of category A {formula for index 1 of factors_df}) +
                       (22% of category B {formula for index 4 of factors_df) +
                       (17% of category C {formula for index 7 of factors_df}) +
                       (3% of category D {formula for index 10 of factors_df}) )

# for opt_3:
result = 3.5 * 1000 * ((58% of category A {formula for index 2 of factors_df}) +
                       (22% of category B {formula for index 5 of factors_df) +
                       (17% of category C {formula for index 8 of factors_df}) +
                       (3% of category D {formula for index 11 of factors_df}) )

So, as an output, for each of the rows in input_df, I should have three results, one for each of the three options.

I can do the calculation manually for each step, but what I am having troubles with is to make a loop that does it automatically for each input row and all 3 options and then passes to the next input row and so on until the last input row.

Advertisement

Answer

Solution

Not sure what your expected results are, but I believe this does what you’re asking for:

def formula(g, *, l, N_cars, v):
    x = (1 - g.h) * (g.a * v*v + g.b*v + g.c + g.d/v) / (g.e * v*v + g.f*v + g.g)
    return N_cars * l * (x * g.pct / 100).sum()


groups = factors_df.rename(columns={"category %": "pct"}).groupby("option")
result = input_df.apply(lambda r: groups.apply(lambda g: formula(g, **r)), axis=1)

Output:

In [5]: input_df.join(result)
Out[5]:
      l  N_cars    v         opt_1         opt_2         opt_3
0   3.5    1000  100   5411.685077   5115.048256   5500.985916
1   5.7     500  110   4425.339734   4169.893681   4483.595803
2  10.0     367  110   5698.595376   5369.652565   5773.612841
3  11.1    1800   95  30820.717985  29180.106606  31384.785443
4   2.8     960  105   4165.270216   3930.726187   4226.877893
5   4.7     800  120   5860.057879   5506.509637   5919.496692
6  10.4     103  111   1663.960420   1567.455541   1685.339848
7  20.1    1950  115  60976.735053  57375.300546  61685.075902

Explanation

The first step is to group factors_df by option. Just to show what that looks like:

In [6]: groups.apply(print)
  category  pct option         a        b  ...        d        e        f       g     h
0        A   58  opt_1  0.000011  0.23521  ...  0.39458  0.00817  0.24566  0.0010  0.00
3        B   22  opt_1  0.002452  0.48327  ...  0.92852  0.00871  0.29568  0.0009  0.02
6        C   17  opt_1  0.082583  0.39493  ...  0.82714  0.00918  0.28572  0.0012  0.00
9        D    3  opt_1  0.018327  0.32342  ...  0.92752  0.00988  0.21958  0.0016  0.00

[4 rows x 11 columns]
   category  pct option         a        b  ...        d        e        f       g     h
1         A   58  opt_2  0.000011  0.23521  ...  0.39458  0.00467  0.24566  0.0010  0.00
4         B   22  opt_2  0.002899  0.49327  ...  0.92852  0.00871  0.30468  0.0009  0.02
7         C   17  opt_2  0.072587  0.35493  ...  0.82723  0.00912  0.29572  0.0018  0.00
10        D    3  opt_2  0.014427  0.32342  ...  0.92752  0.00968  0.22558  0.0026  0.00

[4 rows x 11 columns]
   category  pct option         a        b  ...        d        e        f       g     h
2         A   58  opt_3  0.000011  0.23521  ...  0.39458  0.00467  0.24566  0.0010  0.00
5         B   22  opt_3  0.002452  0.48327  ...  0.92852  0.00771  0.29568  0.0119  0.01
8         C   17  opt_3  0.082583  0.39493  ...  0.82714  0.00962  0.28572  0.0012  0.01
11        D    3  opt_3  0.018327  0.32342  ...  0.94452  0.00988  0.21258  0.0016  0.00

Note that I renamed the category % to pct. This isn’t necessary, but made accessing that column in the formula() function a bit cleaner (g.pct vs g["category %"]).

The next step was to implement formula() in such a way as to accept a group from factors_df as an argument:

def formula(g, *, l, N_cars, v):
    x = (1 - g.h) * (g.a * v*v + g.b*v + g.c + g.d/v) / (g.e * v*v + g.f*v + g.g)
    return N_cars * l * (x * g.pct / 100).sum()

In the function signature, g is a group from factors_df, then the keyword-only arguments l, N_cars, and v, which will come from a single row of input_df at a time.

Each of the three groups shown above will be entered into the formula() function one at a time, in their entirety. For example, during one call to formula(), the g argument will hold all of this data:

  category  pct option         a        b  ...        d        e        f       g     h
0        A   58  opt_1  0.000011  0.23521  ...  0.39458  0.00817  0.24566  0.0010  0.00
3        B   22  opt_1  0.002452  0.48327  ...  0.92852  0.00871  0.29568  0.0009  0.02
6        C   17  opt_1  0.082583  0.39493  ...  0.82714  0.00918  0.28572  0.0012  0.00
9        D    3  opt_1  0.018327  0.32342  ...  0.92752  0.00988  0.21958  0.0016  0.00

When the formula uses something like g.e, it’s accessing the entire e column, and is taking advantage of vectorization to perform the arithmetic calculations on the entire column at the same time. When the dust settles, x will be a Series where each item in the series will be the result of the formula for each of the four categories of car. Here’s an example:

0    0.231242
3    0.619018
6    7.188941
9    1.792376

Notice the indices? Those correspond to category A, B, C, and D from factors_df, respectively.

From there, we need to call formula() on each row of input_df, using the axis argument of pd.DataFrame.apply():

input_df.apply(lambda r: groups.apply(lambda g: formula(g, **r)), axis=1)

The lambda r is an anonymous function object being passed to apply, being applied over axis 1, meaning that r will be a single row from input_df at a time, for example:

In [13]: input_df.apply(print, axis=1)
l            3.5
N_cars    1000.0
v          100.0
Name: 0, dtype: float64
.
.
.

Now, on each row-wise apply, we’re also applying the formula() function on the groups groupby object with lambda g: formula(g, **r). The **r unpacks the row from input_df as keyword arguments, which helps to ensure that the values for v, l, and N_cars aren’t misused in the formula (no need to worry about which order they’re passed into the formula() function).

User contributions licensed under: CC BY-SA
10 People found this is helpful
Advertisement