I have this table and I need to melt away this table to be like the expected table where I need to get the point name (a and b) from the column name and let the bq and progress columns melt.
type bq a bq b progress a progress b P 1 1 1 2 Q 2 3 4 2 R 2 1 1 2
The expected result is as below:
type point bq progress P a 1 1 P b 1 2 Q a 2 4 Q b 3 2 R a 2 1 R b 1 2
How can do it in python?
Advertisement
Answer
Try this:
df = pd.DataFrame({'type':['p','q','r'],
                  'bq a':['1','2','2'],
                  'bq b':['1','3','1'],
                  'progress a':['1','4','1'],
                  'progress b':['2','2','2']})
df_bq = pd.melt(df, id_vars =['type'], value_vars =['bq a','bq b'])
df_bq.columns = ['type','point','bq']
df_bq['point'] = df_bq['point'].apply(lambda x:x.replace('bq ',''))
df_bq.sort_values(by = 'point')
df_p = pd.melt(df, id_vars =['type'], value_vars =['progress a','progress b'])
df_p.columns = ['type','point','progress']
df_p['point'] = df_p['point'].apply(lambda x:x.replace('progress ',''))
df_p.sort_values(by = 'point')
df_concat = pd.concat([df_bq, df_p['progress']], axis=1)
df_concat
Result :

