I have the following type of data.
InvoiceNo InvoiceDate InvoiceType PriceType SellManNo CustomerNo PaymentDate Total 91 1/15/2019 4 2 1 700 1/15/2019 1140.55 92 1/15/2019 4 2 1 13 1/15/2019 201 93 1/15/2019 4 2 1 675 1/15/2019 500 94 1/15/2019 4 2 1 456 1/15/2019 48 95 1/15/2019 4 2 1 709 1/15/2019 276 96 1/15/2019 4 2 1 98 2/14/2019 299 97 1/15/2019 1 2 1 1 1/15/2019 45.66 98 1/15/2019 4 2 1 478 1/15/2019 2.88
This is what I tried:
from sklearn.preprocessing import MinMaxScaler scaling=MinMaxScaler() df_total=df[['Total']] df_total=scaling.fit_transform(df_total) df_total
And I got the error.
only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
Advertisement
Answer
All you should need is:
df['Total'] /= max(df['Total'])